Zum Inhalt springen

Dichteoperator

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 21. Mai 2019 um 12:37 Uhr durch Bleckneuhaus (Diskussion | Beiträge) (Einleitung: Text geordnet / BEdeutung des Dichteops.). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Der Dichteoperator (auch statistischer Operator) beschreibt ein Ensemble von physikalischen Systemen, indem er angibt, mit welcher Wahrscheinlichkeit sich ein herausgegriffenes System in einem bestimmten Zustand befindet. Der Dichteoperator kann durch die Dichtematrix (bzw. statistische Matrix) dargestellt werden.

Der Dichteoperator wurde ursprünglich im Rahmen der klassischen Physik von Stokes für den Polarisationszustand eines Lichtstrahls entwickelt (Stokes-Parameter). In die Quantenmechanik wurde er 1927 von Lew Landau und John von Neumann [1] eingeführt und dann ausführlich von Paul Dirac in seinen Principles of Quantum Mechanics (1930) und von John von Neumann in dessen Mathematische Grundlagen der Quantenmechanik (1932) dargestellt. Mit dem Dichteoperator lässt sich jeder quantenmechanisch definierte Zustand eines einzelnen Systems oder Ensembles beschreiben. Er wird daher auch in der Quantenstatistik viel verwendet.

Konstruktion

Dichteoperator für einen reinen Zustand

Für einen reinen Zustand mit (normiertem) Zustandsvektor heißt der Dichteoperator

.

Dieser Operator bleibt ungeändert, wenn man denselben Zustand durch einen Zustandsvektor beschrieben hätte. Daher besteht eine eineindeutige Zuordnung zwischen dem physikalischen Zustand und seinem Dichteoperator.

Angewendet auf einen beliebigen Zustandsvektor , projiziert der Dichteoperator diesen auf den durch bestimmten 1-dimensionalen Unterraum des Hilbertraums:

,

wobei der Faktor das Skalarprodukt beider Vektoren ist. Als Projektionsoperator ist hermitesch, unitär und idempotent (d. h. ). Seine Eigenwerte sind 1 (für alle Vektoren desselben Zustands) und Null (alle dazu orthogonalen Vektoren).

Für einen (reinen) Überlagerungszustand

heißt der Dichteoperator

.

Wenn und orthogonal sind und als Basisvektoren genommen werden, dann ist durch die Matrix

gegeben. Die kohärente Linearkombination drückt sich in den Nichtdiagonalelementen aus. Alle Matrixelemente sind unabhängig davon, ob man für Überlagerungszustand einen Vektor mit einer globalen Phase gewählt hat.

Dichteoperator für einen gemischten Zustand

Der Dichteoperator beschreibt einen gemischten Zustand. In dem betrachteten Ensemble befinden sich mehrere gleichartige Systeme mit den Wahrscheinlichkeiten in den orthogonalen Zuständen . Sind die Zustände nicht orthogonal, so ist das jeweilige Gewicht nicht mehr die Wahrscheinlichkeit, mit der das Gemisch im jeweiligen Zustand vorliegt. Die Gewichte sind auf 1 normiert: Dann ist (in Bra-Ket-Schreibweise) der Dichteoperator gegeben durch

.

Darin ist

der Projektionsoperator, der angewandt auf einen beliebigen Zustandsvektor dessen Komponente „parallel“ zum Zustand herausprojiziert:

Der Faktor darin ist die Wahrscheinlichkeitsamplitude, das im Zustand vorliegende System im Zustand vorzufinden.

Mit Hilfe der Projektionsoperatoren lässt sich der Dichteoperator auch schreiben als

Für ein Ensemble, in dem alle Systeme im selben Zustand präpariert sind, ist der Dichteoperator daher einfach der Projektionsoperator selbst:

Der Dichteoperator für das kanonische Ensemble ist:

[2]

In der Eigenbasis des Hamiltonoperators nimmt die Form (1) an. Analoges erhält man für den Dichteoperator des großkanonischen Ensembles

.

Messwerte

Für jeden einzelnen Bestandteil des Zustandsgemischs ist der Mittelwert der Messergebnisse einer physikalischen Größe gegeben durch den Erwartungswert Darin ist der zu gehörige Operator (s. Quantenmechanik, Observable).

Da das Ensemble ein Gemisch von Systemen in den verschiedenen beteiligten Zuständen ist, ist der Mittelwert aller Messungen an den einzelnen Systemen die gewichtete Summe der einzelnen Erwartungswerte:

Dies ist gleich der Spur

wie man mit Hilfe eines vollständigen Systems von orthonormierten Basisvektoren sehen kann: Wegen (Einheitsoperator) ist

Sind die gerade die Eigenzustände zur Observable (d. h. mit den Eigenwerten ), dann gilt weiter

Darin ist das über das Ensemble gewichtete Mittel für die Wahrscheinlichkeit, ein herausgegriffenes System im Eigenzustand anzutreffen. ist also auch die Wahrscheinlichkeit, bei einer einzelnen Messung den Eigenwert als Ergebnis zu erhalten. Charakteristisch ist, dass durch eine inkohärente Summe gegeben wird, die von den relativen Phasen der am Ensemble beteiligten Zustände unabhängig ist.

Beispiel: Dichteoperator und Dichtematrix für Elektronen-Polarisation

Die Dichtematrix ist die Matrix, mit der der Operator in Bezug auf eine orthonormierte Basis dargestellt werden kann:

Basiszustände

Im Folgenden bezeichnet das Zeichen „“, dass ein Bra, Ket oder ein Operator bezüglich einer Basis dargestellt wird (vergleiche auch Bra-Ket#Darstellung). Die Zustände „Spin auf“ (bezgl. z-Achse) und „Spin ab“ werden als ket-Vektoren durch Spalten dargestellt. Die zugehörigen bra-Vektoren sind dann Zeilenvektoren: bzw. . Die Projektionsoperatoren (durch Matrizenmultiplikation):

Dies sind auch die Dichtematrizen für vollständig in - bzw. -Richtung polarisierte Elektronen.

Polarisation in z-Richtung

Die -Komponente des Spins hat die aus den Eigenwerten gebildete Diagonalmatrix Für das vorausgesagte Messergebnis ergibt sich für das Ensemble richtig

Für das Ensemble ergibt sich

Andere Polarisionsrichtung

Die Zustände von in - bzw. -Richtung polarisierten Elektronen sind Die Projektionsoperatoren dazu haben (in der Basis der -Eigenzustände!) die Matrizen Charakteristisch ist, dass dies keine Diagonalmatrizen sind und dass sich die verschiedenen Phasen, mit denen die -Eigenzustände als ket-Vektoren hier überlagert wurden, in den Matrixelementen außerhalb der Hauptdiagonale wiederfinden. Das ist Ausdruck der kohärenten Überlagerung, durch die aus -Eigenzuständen die -Eigenzustände gebildet werden.

Unpolarisiertes Ensemble

Sind die Elektronen je zur Hälfte in -Richtung polarisiert, heißt die Dichtematrix:

Die gleiche Dichtematrix ergibt sich für ein Gemisch aus Elektronen, die zu je 50 % in -Richtung polarisiert sind. Damit sind auch alle möglichen Messergebnisse identisch zu denen am Ensemble, das aus -polarisierten Elektronen gebildet wurde. Die ursprünglichen Polarisationsrichtungen sind physikalisch (und damit auch begrifflich) nicht mehr zu unterscheiden: Es ist beide Male ein und dasselbe Ensemble geworden.

Gemisch verschiedener Polarisationsrichtungen

Für ein Gemisch aus Elektronen mit Spin in -Richtung und -Richtung (Anteile bzw. ), heißt die Dichtematrix

Der Erwartungswert des Spins in -Richtung ist dann

Die in ()-Richtung polarisierten Elektronen tragen also erwartungsgemäß nichts zum Erwartungswert bei.

Formale Definition

Gegeben sei ein quantenmechanisches System, das auf einem Hilbertraum  modelliert ist. Ein beschränkter linearer Operator auf ist ein Dichteoperator, wenn gilt:

  1. er ist hermitesch
  2. er ist positiv semidefinit,
  3. er ist Spurklasse mit Spur gleich 1.

Obwohl die Begriffe Dichtematrix und Dichteoperator oft synonym gebraucht werden, besteht ein mathematischer Unterschied. Genau wie in der linearen Algebra eine Matrix die Basisdarstellung eines linearen Operators ist, kann in der Quantenmechanik zwischen abstraktem Dichteoperator und einer konkreten Dichtematrix in einer bestimmten Darstellung unterschieden werden. Ist ein Dichteoperator, so bezeichnet

die Dichtematrix in Ortsdarstellung. Sie ist allerdings keine echte Matrix, da die Ortsdarstellung über ein Kontinuum von uneigentlichen Basisvektoren definiert ist, sondern ein so genannter Integralkern.

In endlichdimensionalen Hilberträumen (z. B. bei Spinsystemen) ergibt sich dagegen dann eine positiv semidefinite Matrix mit Spur 1, also eine echte Dichtematrix, wenn eine Orthonormalbasis gewählt wird:

.

Eigenschaften

  • Die Menge aller Dichteoperatoren ist eine konvexe Menge, deren Rand die Menge der reinen (quantenmechanischen) Zustände ist. Die Menge ist im Gegensatz zu klassischen Theorien kein Simplex, d. h. ein Dichteoperator ist im Allgemeinen nicht eindeutig als Konvexkombination von reinen Zuständen darstellbar.
  • Die Wahrscheinlichkeit, bei der Messung einer Observablen  an einem System, das durch den Dichteoperator  beschrieben wird, den Messwert  zu erhalten, ist gegeben durch
wobei die orthonormierten Eigenvektoren zum Eigenwert  sind und der Projektionsoperator auf den entsprechenden Eigenraum ist. Anschließend befindet sich das System im Zustand
  • Der Mittelwert der Messwerte (Erwartungswert) bei Messung einer Observablen ist

Dichtematrix für reine Zustände

Ist das betrachtete Ensemble ein reines Ensemble, besteht das System also nur aus einem reinen Zustand, so gilt für die Dichtematrix .

Für gemischte Zustände gilt stets .

Dichtematrix für ein gleichverteiltes Ensemble

Ein -Niveau-System, bei dem alle Zustände gleich wahrscheinlich sind, hat die Dichtematrix

wobei die -dimensionale Einheitsmatrix bezeichnet.

Reduzierter Dichteoperator

Der reduzierte Dichteoperator wurde 1930 durch Paul Dirac eingeführt.[3][4] Er bezieht sich auf ein herausgegriffenes Teilsystem eines zusammengesetzten Systems und dient dazu, die Ergebnisse von Messungen an dem Teilsystem vorherzusagen, wenn die übrigen Teile des Systems gar nicht mit beobachtet werden.

Sind und zwei Systeme mit (normierten) Zuständen in ihrem jeweiligen Hilbertraum , dann hat das zusammengesetzte System den Tensorraum zum Hilbertraum. Das Gesamtsystem befindet sich in einem separablen Zustand , wenn feststeht, dass die beiden Teilsysteme sich in den Zuständen bzw. befinden. Allgemein befindet sich das Gesamtsystem in einem Zustand

(mit orthonormierten Basisvektoren und Konstanten ), der als verschränkt bezeichnet wird, wenn er sich nicht als separabler Zustand darstellen lässt.

Für eine Observable des Teilsystems ist der Operator zunächst nur im Hilbertraum definiert. Für die Messung dieser, nur das System betreffenden Observablen am Gesamtsystem muss der Operator gemäß zu einem Operator auf erweitert werden, wobei der Einheitsoperator in ist. Für einen separablen Zustand ergibt sich der Erwartungswert

Das stimmt mit dem Ergebnis überein, das man erhält, wenn man das Teilsystem von vornherein als ein isoliertes System betrachtet. Im Allgemeinen hingegen folgt für den Erwartungswert:

Darin ist der reduzierte Dichteoperator für das System , wenn das Gesamtsystem im Zustand ist. Er ist ein Operator im Raum und hat die Matrixelemente (in der Basis )

Allgemein ausgedrückt geht der reduzierte Dichteoperator für das Teilsystem aus dem Dichteoperator für das Gesamtsystem, der die Matrixelemente hat, durch Bildung der partiellen Spur über den Raum des Teilsystems hervor.

Eine einfache Interpretation ergibt sich für den Fall, dass es sich bei der Basis um die Eigenvektoren des Operators handelt (mit Eigenwerten ). Dann ist der Erwartungswert von ein inkohärent gewichteter Mittelwert von dessen Eigenwerten:

Für den Fall, dass das Gesamtsystem in einem separablen Zustand vorliegt, z. B. , ergibt diese Formel das erwartete Ergebnis denn alle Glieder mit Index sind Null, und die Summe ist die Norm von , also gleich 1.

Einteilchendichteoperator

Der Einteilchendichteoperator[5] ist bei einem Vielteilchensystem der auf den Hilbertraum eines Teilchens reduzierte Dichteoperator. Bei Systemen identischer Teilchen genügt die Kenntnis des Einteilchendichteoperators, um Erwartungswerte und Übergangsmatrixelemente jedes Operators auszurechnen, der die Summe von Einteilchenoperatoren ist. Das betrifft z. B. die kinetische Energie und die potenzielle Energie in einem äußeren Feld und ist daher ein wichtiges Hilfsmittel bei der Modellierung der Elektronenhülle von Atomen und Molekülen. Die Berechnungen werden häufig in Ortsdarstellung durchgeführt, also basierend auf der N-Teilchen-Wellenfunktion . Darin sind die Orts- und Spinkoordinate des i-ten Teilchens. In der Matrixdarstellung treten sie hier als z. T. kontinuierliche Indizes auf und werden deshalb nicht als unterer Index, sondern wie das Argument einer Funktion geschrieben. Die Dichtematrix des Gesamtsystems heißt

Die Einteilchendichtematrix ist dann

Die Wahl der (N-1) Integrations- (bzw. Summations-)variablen mit den Nummern 2 bis ist beliebig, da die Wellenfunktion bei identischen Teilchen gegenüber Umnummerierung höchstens das Vorzeichen wechselt und daher für die Einteilchendichtematrix immer dasselbe Ergebnis herauskommt.

Das Diagonalelement gibt die Gesamtdichte an, die die Teilchen am Ort mit Spinrichtung bilden.

Da der Einteilchendichteoperator hermitesch ist, gibt es eine Basis aus Eigenzuständen: . Für die Eigenwerte gilt und . Die Eigenzustände mit den größten Eigenwerten heißen natürliche Orbitale. Wenn man jedes natürliche Orbital mit einem Teilchen besetzt, also einen Zustand in Form der Slater-Determinante bildet, stellt diese die beste Annäherung an die ursprüngliche N-Teilchen-Wellenfunktion dar, die man im Rahmen eines Einzelteilchenmodells in Bezug auf die gesamte Teilchendichte erreichen kann.

Zeitentwicklung

Aus der Schrödingergleichung, die die Zeitentwicklung (Dynamik) reiner Quantenzustände beschreibt, kann man unmittelbar die Zeitentwicklung gemischter Zustände ableiten. Dazu benutzt man eine beliebige Zerlegung der Dichtematrix in reine Zustände, deren Dynamik der Schrödinger-Gleichung genügt, und berechnet daraus die Dynamik des gemischten Zustandes zu

wobei der Hamilton-Operator des Systems ist. Diese Gleichung ist als von-Neumann’sche Bewegungsgleichung bekannt (nicht zu verwechseln mit der Heisenberg’schen Bewegungsgleichung).

Diese Differentialgleichung kann man für zeitunabhängige Hamilton-Operatoren lösen und erhält mit dem unitären Zeitentwicklungs-Operator die Gleichung

.

Diese Lösung kann man durch Einsetzen leicht überprüfen.

Bemerkenswert ist hierbei, dass für den Operator die übliche Heisenberg'sche Bewegungsgleichung nicht gilt, da der Zeitentwicklungsoperator der direkt aus der Schrödingergleichung abgeleiteten Dynamik gehorcht. Auch die Zeitentwicklung des Operators durch den Zeitentwicklungsoperator erfolgt nicht gemäß der üblichen Zeitentwicklungsgleichung für Operatoren ( für eine gewöhnliche Observable A), was jedoch verständlich ist, da

Entropie

Mit Hilfe der Dichtematrix lässt sich die Von-Neumann-Entropie eines Systems wie folgt definieren:

wobei die Boltzmannkonstante ist, und die Spur über dem Raum genommen ist, in dem operiert.

Die Entropie jedes reinen Zustands ist Null, da die Eigenwerte der Dichtematrix Null und Eins sind. Dies stimmt mit der heuristischen Argumentation überein, dass keine Unsicherheit über die Präparation des Zustandes herrscht.

Man kann zeigen, dass auf einen Zustand angewendete unitäre Operatoren (wie der aus der Schrödinger-Gleichung gewonnene Zeitentwicklungs-Operator) die Entropie des Systems nicht ändern. Das verbindet die Reversibilität eines Prozesses mit seiner Entropieänderung – ein fundamentales Ergebnis, das die Quantenmechanik mit der Informationstheorie und der Thermodynamik verbindet.

Siehe auch

Einzelnachweise

  1. John von Neumann, Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik, Göttinger Nachrichten 1, 1927, S. 245–272
  2. Anton Amann, Ulrich Müller-Herold: Offene Quantensysteme. Springer, 2011, ISBN 978-3-642-05187-6, S. 80 ff. (eingeschränkte Vorschau in der Google-Buchsuche).
  3. P. A. M. Dirac: Note on Exchange Phenomena in the Thomas Atom. In: Mathematical Proceedings of the Cambridge Philosophical Society. 26. Jahrgang, Nr. 3, 1930, S. 376, doi:10.1017/S0305004100016108, bibcode:1930PCPS...26..376D.
  4. U. Fano: Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. In: Rev. Mod. Phys. 29. Jahrgang, 1957, S. 74, doi:10.1103/RevModPhys.29.74.
  5. Frank L. Pilar: Elementary Quantum Chemistry. McGraw-Hill, NY 1968, S. 354 ff.