Zum Inhalt springen

Box-Muller-Methode

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 24. Juni 2006 um 13:14 Uhr durch Chrisqwq (Diskussion | Beiträge). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Box-Muller-Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen.

Idee

Bei dieser Methode werden zunächst zwei Standardzufallszahlen und benötigt. Diese lassen sich beispielsweise mit einem Zufallszahlengenerator erzeugen. Standardzufallszahlen unterliegen einer Rechteckverteilung mit den Parametern und .

Erzeugung standardnormalverteilter Zufallszahlen

Es lässt sich zeigen, dass man nach folgendem Transformationsschritt daraus zwei standardnormalverteilte (stochastisch) unabhängige Zufallszahlen und erhält:

und

.

Hierbei wurde die Inversionsmethode zur Transformation von und in die Polarkoordinaten und ausgenutzt:

und

.

Bei der Anwendung der Inversionsmethode wurde berücksichtigt, dass bei Polarkoordinaten einer Rechteckverteilung mit den Parametern und unterliegt und einer Exponenzialverteilung mit dem Parameter .

Die bisherigen Transformationsschritte erzeugen zwei standardnormalverteilte Zufallszahlen. Eine Standardnormalverteilung ist ein Spezialfall der Normalverteilung, nämlich mit dem Erwartungswert und der Varianz .

Um mit der Box-Muller-Methode Normalverteilungen mit beliebigen Parametern zu erzeugen, lassen sich die erhaltenen nach dem Muster

transformieren.

In der obigen Notation steht wie üblich für die Kreiszahl, für den Sinus, für den Kosinus und für den natürlichen Logarithmus.

Probleme

Verwendet man zur Erzeugung der einen linearen Kongruenzgenerator, so liegen die Paare auf einer durch eine Spirale beschriebenen Kurve. Dieses Verhalten ist eng mit dem im Satz von Marsaglia beschriebenen Hyperebenenverhalten linearer Kongruenzgeneratoren verwandt.

Dieses Problem lässt sich umgehen, wenn statt des linearen Kongruenzgenerators ein inverser Kongruenzgenerator verwendet wird.

Fazit

Die Box-Muller-Methode erzeugt zunächst zwei stochastisch unabhängige und standardnormalverteilte Zufallszahlen, die sich dann in eine Normalverteilung mit beliebigen Parametern transformieren lassen.

Die Box-Muller-Methode erfordert die Auswertung von Logarithmen und trigonometrischen Funktionen, was auf einigen Rechnern sehr zeitaufwendig sein kann.

Alternativen

Weitere Möglichkeiten zur Erzeugung normalverteilter Zufallszahlen sind im Artikel Normalverteilung beschrieben.

Eine Alternative ist z.B. die Polar-Methode, siehe

  • Kinderman, A.J. und J.R. Ramage: Computer Generation of Normal Random Numbers, Jour. Amer. Stat. Assoc., 71(356), p. 893-896 (1976)

Literatur