Zum Inhalt springen

Option (Wirtschaft)

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. Juni 2006 um 22:28 Uhr durch Prescott (Diskussion | Beiträge) (Verteilungsfreie [[No-Arbitrage]]-Beziehungen). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Eine Option bezeichnet in der Wirtschaft ein abgeleitetes Finanzgeschäft (sogenanntes Derivat). Mit dem Kauf einer Option erwirbt man das Recht, ein Wertpapier oder ein Produkt in der Zukunft zu einem vorher vereinbarten Preis zu kaufen oder zu verkaufen. Daher wird eine Option auch als bedingtes Termingeschäft bezeichnet.

Merkmale

Der Käufer erwirbt

  • das Recht, hat aber nicht die Pflicht,
    • während eines festgelegten Zeitraums (Kontraktlaufzeit, Lebenszeit) bei amerikanischen Optionen
    • bzw. am Ende der Laufzeit zum Ausübungsdatum bei europäischen Optionen
  • eine bestimmte Menge eines Gutes (Basiswert, Underlying oder underlying asset)
  • zu einem im voraus festgelegten Preis: Ausübungspreis oder Strike-Preis
  • zu kaufen (Call-Option) oder zu verkaufen (Put-Option).

Der Verkäufer (auch Stillhalter, Schreiber, Zeichner) erhält den Kaufpreis der Option und hat im Falle der Ausübung die Verpflichtung, den Basiswert zum vorher bestimmten Preis zu kaufen (wenn er einen Put verkauft hatte) oder zu verkaufen (Call).

Im Jahre 1973 veröffentlichten die amerikanischen Wissenschaftler Fischer Black und Myron Scholes fast zeitgleich mit Robert C. Merton in zwei unabhängigen Artikeln Methoden zur exakten Bestimmung des „wahren“ Wertes einer Option. Scholes und Merton erhielten 1997 den Preis der Schwedischen Reichsbank für Ökonomische Wissenschaften in Erinnerung an Alfred Nobel, oftmals als Wirtschaftsnobelpreis bezeichnet, "für eine neue Methode zur Bestimmung des Wertes von Derivaten", dem Black-Scholes-Modell.

Optionen werden nicht nur in der Finanzwelt, sondern zunehmend auch bei Managemententscheidungen als sogenannte Realoptionen eingesetzt.

Siehe auch: Artikel in der englischen Wikipedia zu Fischer Black (engl.) und Myron Scholes (engl.).

Taxonomie verschiedener Optionen

Prinzipiell unterscheidet man amerikanische und europäische Optionen. Europäische Optionen können nur am Ende der Laufzeit ausgeübt werden, amerikanische Optionen zu jedem Zeitpunkt während ihrer Laufzeit. Dies beeinflusst den Wert der Option, beispielsweise durch das Vorhandensein von Dividenden im Falle von Aktienoptionen, und macht amerikanische Optionen teurer als eine europäische Option mit exakt den gleichen Merkmalen.

Optionen lassen sich noch weiter nach der zeitlichen Ausübbarkeit charakterisieren:

  • So lässt sich bspw. das Optionsrecht Wandelanleihen, sobald ein zukünftiger Zeitpunkt eingetreten ist, jederzeit ausüben. Wandelanleihen besitzen das Recht auf Wandlung in Aktien und beinhalten Kündigungsrecht für den Emittenten.
  • Bermuda-Optionen beinhalten ein Kündigungsrecht zu bestimmten zukünftigen Zeitpunkten (zu einem festen Kupontermin unter Einhaltung einer dreimonatigen Kündigungsfrist)

Aus diesen beiden Grundformen, den plain vanilla options, können beliebig viele Optionen erstellt werden. Nichtstandardisierte Optionstypen nennt man exotische Optionen. Dazu gehören unter unzähligen anderen capped options, rainbow options, asian options und compound options.

Mehr Informationen zu exotischen Optionen bietet der englische Artikel zum Thema.

Handel

Eine Option ist zunächst ein individueller Vertrag zwischen dem Optionsnehmer und dem Optionsgeber (Stillhalter). Sie ist als solche frei gestaltbar. Der größte Teil des weltweiten Handels mit Optionen besteht jedoch aus standardisierten Kontrakten, die an Terminbörsen wie der EUREX in Europa oder der CBOT (engl.) in den USA gehandelt werden. Dadurch ist garantiert, dass auf geläufige Basiswerte wie Aktien des S&P 500 (engl.) oder des DAX und Rohstoffe wie Öl jederzeit Liquidität für eine große Anzahl an Optionen mit verschiedenen Laufzeiten und Ausübungspreisen besteht.

Optionsscheine sehen oftmals nicht den Verkauf oder Kauf tatsächlicher Basisgüter am Laufzeitende vor, sondern nur den Wertausgleich, wenn dieser Kauf oder Verkauf zum Verfallstermin stattgefunden hätte. Dies nennt man Barausgleich (englisch Cash Settlement). Das liegt daran, dass Optionen meistens für die Absicherung anderer Finanzpositionen benutzt werden (Hedging) oder der Käufer bzw. Verkäufer sich nur die Hebelwirkung zu Nutze machen will. Falls ein Barausgleich nicht möglich ist, wird die Position vor Laufzeitende 'glattgestellt'. Der Schreiber (Stillhalter) eines Calls kauft beispielsweise rechtzeitig den Call zurück, um sich so der Verpflichtung zur Lieferung des Basiswertes zu entziehen.

Optionen und Optionsscheine bilden die Grundlage vieler Anlageprodukte wie beispielsweise von Optionsanleihen (englisch Warrants) oder Swaptions.

Um zum Handel an den Terminbörsen zugelassen zu werden, ist daher oft ein Kapitalnachweis bei der Bank notwendig. Ebenso sind Banken verpflichtet, auf die hohen Risiken von Optionen hinzuweisen.

Basiswerte

An den Finanzmärkten können Optionen auf folgende Basiswerte gehandelt werden

Für den geregelten Handel mit Optionen ist es Voraussetzung, dass die Basiswerte an liquiden Märkten gehandelt werden, um jederzeit den Wert der Option ermitteln zu können. Im Prinzip ist es jedoch auch möglich, dass der Basiswert beliebig gewählt werden kann, solange es möglich ist, die in Abschnitt 6.1 beschriebenen nötigen Variablen zu bestimmen. Diese Derivate werden hingegen nur von zugelassenen Händlern wie Investmentbanken oder Brokern over the counter im OTC-Handel angeboten.

Begriffe

Im Geld

Im Geld (englisch in the money) bezeichnet eine Option, bei der der aktuelle Kurs höher ist als der Ausübungspreis (Call) bzw. der aktuelle Kurs niedriger ist als der Ausübungspreis (Put). Der Betrag, um den der aktuelle Kurs besser ist als der Ausübungspreis, nennt man Inneren Wert der Option.

  1. Im Geld bedeutet für eine Call-Option, dass der Marktpreis des Basiswertes höher ist als der Ausübungspreis.
  2. Eine Put-Option ist dagegen im Geld, wenn der Marktpreis des Basiswertes unter dem Ausübungspreis liegt.

Aus dem Geld

Aus dem Geld (englisch out of the money) ist eine Option, die keinen inneren Wert besitzt.

Eine Call-Option ist aus dem Geld, wenn der Marktpreis des Basiswertes kleiner als der Ausübungspreis ist.

Eine Put-Option ist aus dem Geld, wenn der Marktpreis des Basiswertes größer als der Ausübungspreis ist.

Am Geld

Eine Option ist am Geld (englisch at the money), wenn der Marktpreis des Basiswertes gleich oder nahezu gleich dem Ausübungspreis ist.

Wird der Ausübungspreis dabei mit dem Kassakurs verglichen, so spricht man von at-the-money-spot. Wird der Ausübungspreis mit dem laufzeitgleichen Terminkurs verglichen, so spricht man von at-the-money-forward.

Sensitivitäten und Kennzahlen

Delta

Das Delta einer Option gibt an, wie stark sich der theoretische Wert der Option ändert, wenn sich der Kurs des Basiswerts um eine Einheit ändert und alle anderen Größen konstant bleiben. Für Call-Optionen ist das Delta positiv, für Put-Optionen ist es negativ. Das Delta ist eine wichtige Kennzahl für das Delta-Hedging.

Gamma

Das Gamma einer Option gibt an, wie stark sich das Delta des Optionsscheins ändert, wenn sich der Kurs des Basiswerts um eine Einheit ändert und alle anderen Größen sich nicht verändern. Sowohl für Call-Optionen als auch für Put-Optionen gilt: Gamma >= 0. Die Kennzahl findet auch bei Absicherungsstrategien in Form des Gamma-Hedging Berücksichtigung.

Theta

Das Theta einer Option gibt an, wie stark sich der theoretische Wert einer Option ändert, wenn sich die Restlaufzeit um einen Tag ändert. Für Call-Optionen ist das Theta positiv, da mit zunehmender Restlaufzeit der Barwert des Basispreises sinkt und zugleich die Wahrscheinlichkeit steigender Kurse steigt. Da diese beiden Effekte für die Put-Option entgegengerichtet sind, kann das Theta der Put-Option sowohl positiv, negativ als auch Null sein.

Vega

Das Vega (manchmal auch Kappa) einer Option gibt an, wie stark sich der Wert der Option ändert, wenn sich die Volatilität des Basiswerts um einen Prozentpunkt ändert.

Rho

Das Rho einer Option gibt an, wie stark sich der Wert der Option ändert, wenn sich der risikofreie Zinssatz am Markt um einen Prozentpunkt ändert. Für Call-Optionen ist Rho positiv, für Put-Optionen negativ.

Hebel

Der Hebel wird errechnet, indem man den aktuellen Kurs des Basiswerts durch den aktuellen Preis des Optionsscheins dividiert. Bezieht sich der Optionsschein auf ein Vielfaches oder einen Bruchteil des Basiswerts, muss dieser Faktor in der Rechnung entsprechend berücksichtigt werden.

Bewertung

Einflussgrößen

Der Preis einer Option hängt zum einen von ihren Ausstattungsmerkmalen ab, hier

  • der aktuelle Preis des Basiswerts,
  • der Ausübungspreis,
  • die Restlaufzeit bis zum Ausübungsdatum,

zum andern von dem zugrunde gelegten Modell für die zukünftige Entwicklung des Basiswertes und anderer Marktparameter. Unter dem Black-Scholes-Modell sind die weiteren Einflussgrößen

  • die Volatilität des Basiswerts,
  • der risikofreie, kurzfristige Zinssatz am Markt,
  • erwartete Dividendenzahlungen innerhalb der Lebenszeit.

Der aktuelle Preis des Basiswertes und der Ausübungspreis bestimmen den inneren Wert der Option. Der innere Wert ist die Differenz zwischen dem Ausübungspreis und dem Preis des Basiswertes. Im Falle eines Calls auf einen Basiswert mit einem augenblicklichen Wert von 100,- € und einem Ausübungspreis von 90,- € ist der innere Wert 10,- €. Im Falle eines Puts ist der innere Wert dieser Option 0.

Insbesondere die Volatilität hat einen großen Einfluss auf den Wert der Option. Je stärker der Preis schwankt, umso höher ist die Wahrscheinlichkeit, dass sich der Wert des Basiswertes stark verändert und damit der innere Wert der Option steigt oder sinkt. In der Regel gilt, dass eine höhere Volatilität einen positiven Einfluss auf den Wert der Option hat. In extremen Grenzfällen kann es sich jedoch genau umgekehrt verhalten.

Die Restlaufzeit beeinflusst den Wert der Option ähnlich wie die Volatilität. Je mehr Zeit bis zum Ausübungsdatum vorhanden ist, um so höher ist die Wahrscheinlichkeit, dass sich der innere Wert der Option ändert. Ein Teil des Wertes der Option besteht aus diesem Zeitwert. Es ist theoretisch möglich, den Zeitwert zu berechnen, indem man zwei Optionen vergleicht, die sich nur durch ihre Laufzeit unterscheiden und ansonsten identisch sind. Dies setzt aber den unrealistischen Fall eines nahezu vollkommenen Kapitalmarkts voraus.

Der Anstieg des risikofreien Zinssatzes hat einen positiven Effekt auf den Wert von Kaufoptionen (Calls) und einen negativen Effekt auf den Wert von Verkaufsoptionen (Puts), weil nach den gängigen Bewertungsmethoden die Wahrscheinlichkeit eines Kurs- oder Wertanstiegs des Basisguts an den risikofreien Zinssatz gekoppelt ist. Das liegt daran, dass das Geld, das dank des Calls nicht in einen Basiswert investiert werden muss, zinsbringend angelegt werden kann. Je höher die Zinsen einer alternativen Geldanlage sind, desto attraktiver ist der Kauf eines Calls. Mit steigendem Zinsniveau steigt damit der über den Inneren Wert hinausgehende Wert der Option, der Zeitwert. Beim Put ist die Situation genau umgekehrt: Je höher das Zinsniveau, desto niedriger ist der Zeitwert des Puts, weil man theoretisch den Basiswert der Option besitzen müsste, um das Verkaufsrecht in Anspruch nehmen zu können.

Dividendenzahlungen im Falle von Optionen auf Aktien haben negativen Einfluss auf den Wert einer Kaufoption im Vergleich zur selben Aktie bei Dividendenlosigkeit, da während der Optionshaltedauer auf Dividenden verzichtet wird, die theoretisch durch Ausübung der Option vereinnahmt werden können. Umgekehrt haben sie im Vergleich zur selben dividendenlosen Aktie einen positiven Einfluss auf den Wert einer Verkaufsoption, weil während der Optionshaltedauer noch Dividenden vereinnahmt werden können, die bei sofortiger Ausübung dem Optionsinhaber zuständen. Im Falle von Optionen auf Währungen oder Rohstoffe wird der zugrunde liegende Zinssatz der Währung oder die 'convenience yield' anstelle von Dividenden verwendet.

Asymmetrischer Gewinn und Verlust

Im Falle einer für ihn nachteiligen Entwicklung im Preis des Basiswertes wird der Besitzer der Option sein Recht nicht ausüben und die Option verfallen lassen. Er verliert damit maximal den Optionspreis - d.h. er realisiert einen Totalverlust! -, hat aber die Möglichkeit auf einen unbegrenzten Gewinn bei Kaufoptionen. Dies bedeutet, dass die möglichen Verluste des Verkäufers bei Kaufoptionen unbegrenzt sind. Allerdings könnte man diesen Verlust auch als 'entgangenen Gewinn' (gedeckter Short-Call) betrachten, es sei denn, der Verkäufer der Kaufoption ist nicht im Besitz der entsprechenden Basiswerte (muß also zur Erfüllung kaufen und dann liefern - ungedeckter Verkauf einer Kaufoption (ungedeckter Short-Call), wobei ungedeckt beudeutet, dass die Position nur aus einem Instrument besteht.).

Die folgenden Grafiken verdeutlichen die asymmetrische Auszahlungsstruktur. Die dargestellten Optionen sind identisch in allen Einflussgrößen. Wichtig für das Verständnis ist, dass der Käufer einer Option eine long position eingeht und der Verkäufer einer Option eine short position eingeht. In allen vier Fällen ist der Wert der Option 10 und der Ausübungspreis 100.

Auszahlungsstruktur einer Call Option abhängig vom Preis des Basiswertes am Laufzeitende.

In der vorherigen Grafik ist zu sehen, dass der Käufer (long) des Calls einen maximalen Verlust von 10 hat, hingegen unbegrenzte Gewinnmöglichkeiten besitzt. Im Gegensatz dazu hat der Verkäufer (short) einen maximalen Gewinn von 10 mit unbegrenzten Verlusten.

Auszahlungsstruktur einer Put Option abhängig vom Preis des Basiswertes am Laufzeitende.

Im Falle eines Puts hat der Käufer (long) ebenfalls einen maximalen Verlust von 10. Ein häufiger Fehler ist die Übertragung der unbegrenzten Gewinnmöglichkeit der Kaufoption auf die Verkaufsoption. Das Basisgut kann aber allenfalls den Kurswert null annehmen. Dadurch ist die maximale Gewinnmöglichkeit auf diesen Fall eines Kurses von null begrenzt. Genau wie beim Call hat der Verkäufer (short) einen maximalen Gewinn von 10 mit nunmehr nur begrenzten Verlusten, wenn der Kurs des Basiswerts null annimmt. Der Unterschied zwischen Call und Put liegt darin, wie sich die Auszahlung im Verhältnis zum Basiswert verändert, und in der Begrenzung des Maximalgewinns/-verlusts bei Verkaufsoptionen.

Berechnung des Optionspreises

In der Optionspreistheorie gibt es prinzipiell zwei Herangehensweisen zur Bestimmung des fairen Optionspreises:

  • Mit Hilfe von Abschätzungen ohne Annahmen über mögliche zukünftige Aktienkurse und deren Wahrscheinlichkeiten
  • Durch mögliche Aktienkurse und risikoneutrale Wahrscheinlichkeiten. Hierzu zählen das Binomialmodell sowie das Black-Scholes-Modell

Prinzipiell ist es möglich, die stochastischen Prozesse, welche den Preis des Basiswertes bestimmen, auf unterschiedliche Weise zu modellieren. Man kann diese Prozesse analytisch zeitkontinuierlich mit Differentialgleichungen und analytisch zeitdiskret mit Binomialbäumen abbilden. Eine nichtanalytische Lösung ist durch Zukunftssimulationen möglich.

Das bekannteste analytisch zeitkontinuierliche Modell ist das Modell von Black und Scholes. Das bekannteste analytisch zeitdiskrete Modell ist das Cox-Ross-Rubinstein-Modell. Eine gängige Simulationsmethode ist die Monte-Carlo-Simulation.

Siehe auch: Zu Cox, Ross und Rubinstein den englischen Artikel Binomial-Options-Model (engl.)

Black-Scholes

Die Black-Scholes-Formeln für den Wert europäischer Calls und Puts auf Basiswerte ohne Dividendenzahlungen sind

wobei

In dieser Formel ist S der heutige Preis des Basiswertes, X der Ausübungspreis, r der risikolose Zinssatz, T die Lebenszeit der Option in Jahren, σ die Volatilität von 'S' und N(x) die kumulative Wahrscheinlichkeit, dass eine Variable mit einer Standardnormalverteilung von ø(0,1) kleiner als x ist.

Die Formel für c gibt auch den Wert einer amerikanischen Call Option mit den selben Kennzahlen unter der Annahme, dass der Basiswert keine Dividenden zahlt. Es existiert keine analytische Lösung für den Wert einer amerikanischen Put-Option.

Wertgrenzen

Eine Call-Option kann nicht mehr wert sein als der Basiswert. Angenommen, der Basiswert wird heute zu 80,- € gehandelt und jemand bietet eine Option auf diesen Basiswert für 90,- € an. Niemand würde diese Option kaufen wollen, weil der Basiswert selbst günstiger zu erwerben ist, der offensichtlich mehr wert ist als die Option. Da z.B. eine Aktie als Basiswert keine Verpflichtungen beinhaltet, kann diese gekauft und deponiert werden. Bei Bedarf wird sie wieder hervorgeholt. Dies entspricht einer ewigen Option mit Ausübungskurs 0; eine wertvollere Option ist aber nicht denkbar, so dass die (Call-)Option nie wertvoller sein kann als der Basiswert.

Eine Put-Option kann nicht mehr wert sein als der Barwert des Ausübungspreises. Niemand würde für das Recht, etwas für 80,- € verkaufen zu dürfen, mehr als 80,- € ausgeben. Finanzmathematisch korrekt müssen diese 80,- € auf den heutigen Barwert abgezinst werden.

Diese Wertgrenzen sind der Ausgangspunkt zur Bestimmung des Wertes einer europäischen Option, die Put-Call Parität (engl.).

Verteilungsfreie No-Arbitrage-Beziehungen

Hier geht es darum mittels No-Arbitrage-Argumenten, Schranken für Call- und Putwerte zu finden. Für die Ermittlung von No-Arbitrage-Beziehungen (ohne Voraussetzung einer bestimmten Verteilung) wird angenommen, dass die verfügbaren Instrumente Aktien, Zero Bonds sowie Calls und Puts verschiedener Serien sind.

  • Die Optionen sind nicht dividendengeschützt.
  • Es handelt sich um friktionslose Märkte, d.h. es fallen keine Gebühren an; es wird von einem Kauf-Verkauf-Spread abstrahiert.
  • Es gibt keinen Steuereffekt, der sich aus unterschiedlicher Besteuerung von Unternehmensebene und Anlegerebene ergibt.
  • Leerverkäufe sind möglich, Sollzins ist gleich Habenzins.
  • Es besteht kein Ausfallrisiko.

Obere Schranken für Calls

Der unsichere Wert eines europäischen Calls im Ausübungszeitpunkt kann nicht größer sein als der Wert der Aktie; denn der Call beinhaltet das Recht, die Aktie zu einem vorher festgelegten Preis zu kaufen. Diese Relation im Ausübungszeitpunkt muss auch im Anfangszeitpunkt gelten. Also ist der aktuelle Aktienkurs größer als der Callpreis.

Untere Schranken für Calls

Ein europäischer Call ist mindestens so groß wie der Aktienkurs (vor der Dividendenzahlung) abzüglich dem abgezinsten Basispreis und der abgezinsten Dividende. Der Call kann nie einen negativen Wert annehmen; es ist ein Recht ohne Pflichten (limited liability).

Ein amerikanischer Call ist mindestens soviel Wert wie ein europäischer Call und der Differenz zwischen dem aktuellen Aktienkurs und dem Basispreis, er könnte heute schon ausgeübt werden.

Obere Schranken für Puts

Ein europäischer Put ist nicht mehr Wert als der abgezinste Basispreis, ein amerikanischer Put nicht mehr als der Basispreis.

Untere Schranken für Puts

Ein europäischer Put ist mindestens so groß wie der abgezinste Basispreis abzüglich dem Aktienkurs und zuzüglich der abgezinsten Dividende. Der Putwert ist mindestens Null.

Ein amerikanischerPut ist mindestens soviel Wert wie ein europäischer Put und der Differenz zwischen dem Basispreis und dem aktuellen Aktienkurs.

Obere Schranken für Calls und Puts

Ein Call ist mindesten Null aber weniger wert als der aktuelle Aktienkurs, wobei der amerikanische Call mehr wert ist als der europäische.

Abschätzungen in Abhängigkeit vom Basispreis

Monotonie im Basispreis: Eine (europäische) Kaufoption für eine Aktie (Call) mit niedrigerem Basispreis ist teurer als eine sonst komplett identische Option mit höherem Basispreis. Ein Call ist das Recht, eine Aktie zum vorher festgelegten Basispreis zu kaufen. Dieses Recht ist um so mehr wert, je "billiger" der Optionsinhaber die Aktie erwerben kann (höherer innerer Wert, d.h. die Differenz zwischen aktuellem Aktienkurs und Basispreis. Dies gilt auch für Verkaufsoptionen für eine Aktie (Put), wobei ein höherer Basispreis einen höheren Wert impliziert.

Optionswertdifferenz: Zusätzlich lässt sich eine Aussage über Wertgrenzen für Optionen anhand der Differenz der Ausübungspreise (höherer minus niedrigerer) machen. Diese ist im Falle von Call-Optionen größer als die Differenz des Calls mit dem niedrigeren Ausübungspreis und des Calls mit dem höheren Basispreis. Im Falle von Puts ist die Differenz der Ausübungspreise kleiner als die Differenz der Puts (mit höherem Minus niedrigerem Ausübungspreis).

Konvexität im Ausübungspreis: Eine Kombination aus zwei Calls (bzw. Puts) mit unterschiedlichen Basispreisen ist teurer als eine Option mit dem Durchschnittsbasispreis aus den zwei gewichteten Optionen. Eine Optionsstrategie, die sich in diesem Zusammenhang bilden lässt, ist der Butterfly Spread.

Abschätzungen in Abhängigkeit von der Optionsfrist

Hier muss zwischen amerikanischen und europäischen Optionen unterschieden werden.

Ein amerikanischer Call mit längerer Laufzeit ist mindestens soviel wert, wie ein entsprechender Call mit kürzerer Laufzeit. Das Recht eine Aktie jederzeit zu einem vorgelegten Ausübungspreis zu kaufen, ist um so mehr wert, je länger dieses Recht ausgeübt werden kann. Umgekehrt gilt dies für Puts.

Bei europäischen Optionen muss danach differenziert werden, ob und wann eine Dividende gezahlt wird. Hier sind Volatitilitätseffekte und Zinseffekte zu beachten:

  • Ein europäischer Call mit längerer Laufzeit ist mehr wert als ein Call mit kürzerer Laufzeit, wenn der Dividendentermin außerhalb des Intervalls zwischen beiden Ausübungszeitpunkten ist.
  • Liegt der Dividendenzeitpunkt jedoch zwischen den beiden Ausübungszeitpunkten, so ist keine definitive Aussage möglich. Die Höhe der Dividende bestimmt den dominierenden Effekt.
  • Im Falle von Puts ist es sogar möglich, dass der länger laufende Put weniger wert ist als der mit kurzer Laufzeit. Dies ist abhängig vom aktuellen Preis der Aktie.
    • Ist dieser größer als der Basispreis so ist ein längerer laufender Put lohnender.
    • Ist hingegen der aktuelle Aktienkurs sehr viel kleiner als der Basispreis, ist der Put also "deep in the money" so ist die Relation aufgrund stärkerer Abzinsung möglich: Im Extremfall ist der Aktienkurs Null. Wird der Put zu einem früheren Zeitpunkt ausgeübt, so muss er nicht so stark abgezinst werden. Der Erlös ist nicht steigerbar. Also gilt in diesem Fall, dass der Put mit längerer Laufzeit weniger wert ist.
    • Es handelt sich hier aber lediglich um eine Abschätzung aufgrund von heute bekannter Date. Das Gegenteil heißt nicht automatisch, dass eine Ausübung optimal wäre.

Beziehungen zwischen Call- und Putwerten

Es werden europäische Put- und Calloptionen betrachtet mit gleichen Underlying, Basispreis und Laufzeit. Setzt man Calls und Puts ein um eine Aktienposition zu hedgen (durch Call short, Put long, Aktie long) kann man im Falle von europäischen Optionen die Put-Call-Parität herleiten. Diese beruht auf dem Gesetz des einen Preises. Diese Beziehung wurde von Hans Stoll (1969, Journal of Finance) erstmals beschrieben.

Die Aussage ist folgende: Ein europäischer Put hat den Wert eines Portfolios aus europäischen Call abzüglich dem aktuellen Aktienkurs zuzüglich dem T Perioden abgezinsten Basispreis.

Zusammenfassung

  
   mit --Prescott 22:28, 16. Jun 2006 (CEST)E_1<E_2
  
   mit 
   mit 

Berücksichtigung von Zinsen

Der Gewinn bzw. Verlust von Optionen lässt sich unter Berücksichtigung von Zinsen bestimmen als:

wobei linear ist, da hier der Geldmarktzinssatz verwendet wird.

Verwässerungsschutz

Bei den Bewertungsmethoden wird implizit angenommen, dass das Optionsrechts nicht durch Kapitalmaßnahmen der Aktiengesellschaft an Wert verlieren (verwässern) kann. Dies wird durch den sog. Verwässerungsschutz beim Optionshandel gewährleistet.

Kritik zu den Standardbewertungsmethoden

Üblicherweise basieren die Bewertungsmethoden auf den Annahmen, dass die Wertänderungen zufällig geschehen und nach der Standardverteilung ("Glockenkurve") verteilt sowie unabhängig voneinander sind. Nach B. Mandelbrot sind alle darauf aufbauenden Modelle und Bewertungsformeln (z.B. die obige von Black/Scholes) falsch. Seine Untersuchungen ergaben, dass die Kursänderungen exponentiell verteilt und voneinander abhängig sind und damit zu wesentlich heftigeren Preisausschlägen führen, als die Standardmodelle vorsehen. Die Nobelpreisträger Merton und Scholes haben z.B. mit ihrem Hedgefonds LTCM eine spektakuläre Pleite hingelegt, als die Anleihemärkte wegen der Russlandkrise in sehr starke Turbulenzen gerieten. Nach ihrer Theorie hätten derartige Kurssprünge gar nicht auftreten dürfen.

Optimale Ausübung

Amerikanische Optionen lassen sich zu mehreren Zeitpunkten ausüben. Das Ausübungsverhalten wird beeinflusst von den Faktoren Zinsen auf Basispreis, einen Flexibilitätseffekt und die Dividende. Zu differenzieren ist nach Calls und Puts.

Ein positiver Effekt bedeutet, dass ausgeübt werden soll, ein negativer Effekt, dass es lohnender ist abzuwarten.

Bei Zinsen auf den Basispreis ist der Effekt auf Calls negativ, dagegen positiv. Der Flexibilitätseffekt wirkt sowohl negativ auf Calls wie auch auf Puts. Das Dividendenereignis hat einen positiven Effekt auf Calls, jedoch einen negativen auf Puts.

Dividenden

  • Wird keine Dividende gezahlt, so ist die Ausübung eines Calls am Ende der Laufzeit immer optimal.
  • Bei Dividendenzahlung ist das Abwarten bis zum Endtermin für Puts weiterhin optimal. Jedoch werden nach der Zahlung einer Dividende Calls nie ausgeübt.

Optionstrategie

Optionstrategien sind Positionen in Optionen oder Basisinstrumenten. Ungedeckte (naked) Optionsstrategien sind die einfachen Instrumente Aktien, Call und Put, die jeweils long und short gegangen werden kann. Gedeckte Optionstrategien lassen sich nach Hedge, Spread oder Combination kategorisieren.

Hedge-Positionen

Eine Hedge-Position ist ein Portfolio aus Optionen und der dazu gehörenden Aktie. Dabei werden entweder die Verluste aus der Aktie durch den Ausübungsgewinn bei den Optionen oder die Ausübungsverluste bei den Optionen durch Gewinne bei der Aktie ganz oder teilweise gedeckt, ohne die Risiken zu erhöhen:

Spread

Beim Spread handelt es sich um ein Portfolio aus gekauften (long) und verkauften (short) Optionen derselben Klasse. Es handelt sich also nur um Calls oder nur um Puts. Die Optionen entstammen verschiedener Serien, d.h. sie unterscheiden sich nach Basispreis oder Restlaufzeiten: Je nach Verhältnis von eingesetzten Optionen spricht man von x:y spreads. Eine Credit-Position liegt dann vor, wenn bei Aufbau der Position einen Mittelzufluss erfolgt, eine Debit-Position, wenn Mittel abfließen.

1:1 Spreads

Ratio Spreads

  • Backspread

Combination

Eine Combination besteht aus Calls und Puts derselben Aktie. Entweder werden beide gekauft (long gegangen) oder beide verkauft (short).

  • Straddle
    • bottom straddle/bought straddle
    • top straddle/written straddle
    • covered written straddle
  • Strangle
  • horizontaler strangle

Literatur

  • Hull, John C. (1998). Fundamentals of Futures and Options Markets. 4th ed. London: Prentice Hall
  • Cox, J., Ross, S. and Rubinstein, M. (1979). Option Pricing: A Simplified Approach. Journal of Financial Economics Vol. 7 p. 229–264.
  • Black, F. and Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy Vol. 81 p. 637–659
  • Merton, R.C. (1973). Theory of Rational Option Pricing. Bell Journal of Economics and Management Sciene Vol. 4 p. 141–183
  • Mandelbrot, Benoit und Hudson, Richard L. (2005) Fraktale und Finanzen. Märkte zwischen Risiko, Rendite und Ruin.

Siehe auch

Kommerzielle Websites