Effektivwert
Unter dem Effektivwert versteht man in der Elektrotechnik den quadratischen Mittelwert einer zeitlich veränderlichen physikalischen Größe. Vorzugsweise wird der Begriff auf Wechselgrößen angewandt, allgemein auf Größen in stationären Vorgängen.
Der Effektivwert der veränderlichen Größe ist so groß wie derjenige Wert einer Gleichgröße, die an einem ohmschen Verbraucher in einer repräsentativen Zeitspanne dieselbe elektrische Energie umsetzt wie die zeitlich veränderliche Größe. Eine gleichwertige Aussage ist über die elektrische Leistung möglich, wie sie weiter unten verwendet wird.
Der Effektivwert hängt sowohl vom Scheitelwert als auch von der Kurvenform ab. In der englischen Sprache wird der Effektivwert mit RMS (Abkürzung für Root Mean Square, Quadratisches Mittel) bezeichnet.

1 = Scheitelwert, Amplitude
2 = Spitze-Tal-Wert,
3 = Effektivwert,
4 = Periodendauer
Allgemeines
Eine häufige Verwendung eines Effektivwertes findet man bei der Wechselspannung, die man aus dem Stromnetz bzw. der Steckdose beziehen kann. Diese sinusförmige Spannung hat in Mitteleuropa den Nennwert von 230 V bei einer Frequenz von 50 Hz. Dieser Nennwert gibt den Effektivwert an, nicht die Amplitude. Die momentane Leistung schwankt zwischen null und dem Doppelten der mittleren Leistung.
Der aufgenommene Strom von Geräten ist, abweichend von der Spannung, oft nicht sinusförmig, verursacht durch nichtlineare Bauelemente wie Dioden oder durch elektronische Baugruppen wie Schaltnetzteile. Die Erwärmung in Verlustwiderständen ergibt sich aus dem Effektivwert der Stromstärke, daher muss man zur Dimensionierung von Leiterquerschnitten den Strom in Form seines maximalen Effektivwertes berücksichtigen.
An ohmschen Verbrauchern lassen sich mit Hilfe der Effektivwerte von Stromstärke oder Spannung viele Formeln der Gleichstromtechnik auch für die Wechselstromtechnik verwenden.
Darstellung der Definition

Der Effektivwert einer zeitlich veränderlichen Größe wird definiert als diejenige Gleichgröße, die in einen ohmschen Widerstand im zeitlich konstanten Mittel dieselbe Leistung (Wärme pro Zeitspanne) überträgt.
Bei der Schreibweise mit reellwertigen Größen gilt für die Leistung als Gleichwert über die Augenblickswerte der Leistung
Dabei sind und die Augenblickswerte von Spannung und Stromstärke. Die Größe ist bei periodischen Vorgängen die Periodendauer oder bei statistischen Vorgängen eine hinreichend lange Zeit (mathematisch streng für ). Der Anfangszeitpunkt geht bei periodischen Vorgängen nicht in das Ergebnis ein; er kann nach Zweckmäßigkeit für die Rechnung gewählt werden und wird oft auf null gesetzt.
Für den Effektivwert der Spannung mit dem zugehörigen Wert der Stromstärke und mit dem ohmschen Gesetz gilt
wobei diese Leistung übereinstimmen soll mit der Leistung, die bei Augenblickswerten umgesetzt wird (mit dem ohmschen Gesetz )
Nach Gleichsetzung, Kürzung der Konstanten und Radizierung erhält man den Effektivwert in Form einer Gleichung[1][2][3]
Die letzte Schreibweise verdeutlicht die Merkregel, die in der englischen Bezeichnung „root mean square“ steckt: Wurzel aus dem Mittelwert des Quadrats.
Entsprechende Gleichungen gelten für den Effektivwert der Stromstärke und allgemein bei jeder anderen veränderlichen, aber stationären Größe.
Lässt sich der Verlauf des Signals nicht als Funktion angeben, kann zur Berechnung des Effektivwertes ein Näherungsverfahren mit abgetasteten Augenblickswerten angewendet werden. Mit in der Periodendauer erfassten Werten, so dass wird, erhält man
wobei Abtast- bzw. Momentanwerte sind, die in den Abständen während einer Periode abgelesen werden.
Bei konstanten Abständen vereinfacht sich das zu und
Spezielle Signalformen
Bei einem linearen Verbraucher stellt sich aufgrund der Spannung ein Strom ein, der denselben zeitlichen Verlauf in Form und Frequenz und bei ohmschen Verbrauchern keine zeitliche Phasenverschiebung aufweist.
Sinusförmige Spannung
Nach den Additionstheoremen gilt
Mit enthält das Quadrat einer Sinusschwingung gemäß dieser Gleichung einen Gleichanteil mit der Höhe ½ und einem Wechselanteil mit der Amplitude ½ bei doppelter Frequenz. Bei der Mittelwertbildung fällt der Wechselanteil heraus. Der Gleichanteil ergibt den Mittelwert.

Angewendet auf das Quadrat einer sinusförmigen Spannung mit
lässt sich der quadratische Mittelwert zu
bestimmen. Somit ergibt sich der Effektivwert aus seiner Wurzel:
Die rechnerische Herleitung verwendet
woraus nach dem Einsetzen der Grenzen der Mittelwert
folgt. Eingesetzt in die definierende Gleichung liefert das
Umgekehrt ist bei Sinusform
Bei Netzspannung mit dem Effektivwert 230 V ergibt sich die Amplitude zu 325 V.
Pulsdauermodulierte Gleichspannung

Soll die Stromentnahme aus einer Spannungsquelle gedrosselt werden, so ist eine bewährte Methode dazu die Pulsdauermodulation, da die Schaltvorgänge nahezu verlustfrei ablaufen. Wird während einer festen Periodendauer die Spannung nur für einen Teil der Periode eingeschaltet, so vermindert sich der mittlere Strom gegenüber dem in der Einschaltphase fließenden Strom proportional zum Tastgrad auf
Der Effektivwert ergibt sich dabei zu
Die Tatsache, dass ist, sollte man bei der Erwärmung von Verlustwiderständen (beispielsweise dem Innenwiderstand der Spannungsquelle) tunlichst bedenken. Zur Messung dieses gepulsten Stromes ist zu beachten, dass es sich um eine Mischgröße handelt; siehe dazu weiter unten.
Weitere Signalformen
Für Dreieck- und Rechtecksignale siehe Tabelle bei Formfaktor.
Messtechnische Erfassung

Gleichrichtwert und Effektivwert
Spannungsmessgeräte für Wechselspannungen wurden ursprünglich für die Anzeige des Effektivwertes sinusförmiger Spannungen ausgelegt, indem sie den Gleichrichtwert (Mittelwert des Betrages) der Spannung erfassen und den Formfaktor für Sinus-Spannungen durch entsprechende Justierung der Spannungsteiler in die Anzeige einbeziehen. Da der Formfaktor von der Kurvenform abhängig ist, ist die Anzeige des Effektivwertes nur für jene Spannungen richtig, die den Formfaktor einer sinusförmigen Spannung aufweisen. In der Elektrotechnik bzw. Elektronik weichen die Spannungsverläufe jedoch häufig stark von einem Sinusverlauf ab, weshalb durch den Einsatz solcher Messgeräte erheblich fehlerhafte Messwerte entstehen können.
Für Messgeräte, die den Effektivwert tatsächlich gemäß seiner Definition bestimmen, wird zur Verdeutlichung gelegentlich werbewirksam behauptet, dass sie den „echten Effektivwert“ (englisch TRMS, T für true) messen; ein Effektivwert kann aber nicht echt oder unecht oder true sein.
Der am häufigsten eingesetzte Vertreter unter den effektivwert-bildenden elektromechanischen Messgeräten ist das Dreheisenmessgerät. Es ist allerdings nur für einen begrenzten niedrigen Frequenzbereich geeignet.
Eine andere Lösung erfolgt mittels Thermoumformer. Dabei fließt der zu messende Strom durch einen Widerstand, der sich proportional zum Quadrat des Effektivwertes erwärmt (Stromwärme) und dessen Temperaturerhöhung gemessen wird. Durch Einstellung eines Gleichstroms, der dieselbe Temperaturänderung verursacht, kann diese Messanordnung kalibriert werden. Mit dieser thermischen Messmethode kann bei Frequenzen bis zu einigen Gigahertz richtig gemessen werden.
In Messgeräten für niedrigere Frequenzen (bis etwa 1 MHz) werden üblicherweise integrierte RMS-Umformer eingesetzt, die Fehlergrenzen kleiner als 0,2 % erreichen. Für mittlere Frequenzen (bis einige 100 MHz) werden häufig digitale Umsetzer eingesetzt, die das Signal abtasten und den Effektivwert digital berechnen. Die meisten digitalen Oszilloskope können den Effektivwert mit eingeschränkter Genauigkeit direkt anzeigen.
Effektivwertbildung mit elektrischem Ausgangssignal
Es gibt mehrere elektronische Schaltungen zur Effektivwertbildung. Eine davon hat sich besonders bewährt und wird von mehreren Herstellern als integrierte Schaltung angeboten.[4] Das Eingangssignal oder darf Gleich- und Wechselanteile enthalten. Der Ausgangsstrom ist proportional zum Effektivwert des Eingangssignals, wobei sich der dazu notwendige Gleichwert aus dem durch und gebildeten Tiefpass ergibt. Die Schaltung arbeitet folgendermaßen (siehe Bild):

In der Eingangsstufe wird ein Strom erzeugt mit . Der kombinierte Quadrierer und Dividierer erzeugt ein . Dieses Zwischenergebnis wird geglättet und steuert als mittels Stromspiegelung zwei Stromquellen. Die eine führt das Signal auf den Dividiereingang zurück; die andere liefert das Ausgangssignal . Damit ergibt sich folgende Rechnung:
Mischgrößen

Eine Mischspannung ist eine Überlagerung aus einer Gleichspannung und einer Wechselspannung
Der Effektivwert der Mischspannung ergibt sich zu
Dabei ist der Effektivwert des Wechselanteils. Bei den effektivwert-bildenden Spannungsmessgeräten gibt es Ausführungen, die den Effektivwert der Gesamtspannung (AC+DC) oder des Wechselanteils alleine (AC) erfassen. Manche Multimeter sind auch umschaltbar.
Soll der Gleichanteil alleine gemessen werden, so ist ein effektivwert-bildendes Messgerät überhaupt nicht verwendbar.
Soll der Wechselanteil alleine gemessen werden, so ist ein Messgerät dann verwendbar, wenn es den Gleichanteil durch Kondensator oder Transformator abtrennt.
Entsprechendes gilt für den Mischstrom und für effektivwert-bildende Strommessgeräte.
Literatur
Viele Lehrbücher der Messtechnik oder der Elektrotechnik, beispielsweise
- Kurt Bergmann: Elektrische Messtechnik. Vieweg, 2000, 6. Aufl., S. 18.
- Wilfried Weißgerber: Elektrotechnik für Ingenieure 2. Springer Vieweg, 2013, 8. Aufl., S. 2.
Einzelnachweise
- ↑ Horst Steffen, Hansjürgen Bausch: Elektrotechnik: Grundlagen. Teubner, 6. Aufl. 2007, S. 204
- ↑ Rainer Parthier: Messtechnik: Grundlagen und Anwendungen der elektrischen Messtechnik für alle technischen Fachrichtungen und Wirtschaftsingenieure., Vieweg+Teubner, 5. Aufl. 2010, S. 21
- ↑ Thomas Mühl: Einführung in die elektrische Messtechnik: Grundlagen, Messverfahren, Geräte. Vieweg+Teubner, 3. Aufl. 2008, S. 80
- ↑ [1] „True RMS-to-DC Converter“