Zum Inhalt springen

Diskussion:Differentialrechnung

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 29. März 2018 um 19:53 Uhr durch Digamma (Diskussion | Beiträge) (Tangente2.gif als "anschauliche Darstellung" eher verwirrend?: aw). Sie kann sich erheblich von der aktuellen Version unterscheiden.

archiv

archivierte diskussionen (seit 2004) sind unter Diskussion:Differentialrechnung/archiv zu finden. -- seth 10:33, 24. Okt. 2007 (CEST)Beantworten
siehe auch diskussion ueber die archivierung: hier

Koch-Kurve eine Funktion?

Im Abschnitt Differenzierbarkeit und Ableitung in einem Punkt: Formale Definition und Notation lautet der letzte Satz: „Ein bekanntes Beispiel für eine stetige, nicht differenzierbare Funktion ist die von Helge von Koch 1904 vorgestellte Koch-Kurve.“ Ist die Koch-Kurve eine Funktion? --Pohli 15:04, 21. Mai 2009 (CEST)Beantworten

Jein, die Koch-Kurve ist die Bildmenge einer Funktion, genauer gesagt eines stetigen, nicht diffbaren Weges. --χario 15:09, 21. Mai 2009 (CEST)Beantworten
das beispiel der kochkurve als funktion ist mir beim lesen des artikels ebenso nicht klar geworden. das sollte man evtl präzisieren oder weglassen. -- 88.73.194.68 14:33, 4. Jul. 2010 (CEST)Beantworten
Ich habe jetzt mal das Wort mehrdimensional hinzugefügt. Thematisch passt die Koch-Kurve prima an die Stelle, problematisch ist nur, dass zu dem Zeitpunkt im Artikel noch gar nicht definiert wurde, wie man die Ableitung mehrdimensionaler Objekte zu verstehen hat. --P. Birken 15:41, 4. Jul. 2010 (CEST)Beantworten

Ableitung.png als SVG

Die Datei Ableitung.png sollte meiner Meinung nach dringend in eine SVG-Datei konvertiert werden. Da ist wenig zu erkennen, weil die Linien zu dick und verpixelt sind. Da die Datei aber Wikimedia Commons steht, konnte ich dort die Vorlage Vorlage:In SVG konvertieren nicht anbringen. --Jobu0101 10:27, 14. Sep. 2009 (CEST)Beantworten

Liebe Autoren, wie wäre es einen Link zur Webadresse WolframAlpha unten bei den Weblinks aufzunehmen ?

Gruß --93.199.183.251 22:16, 23. Mär. 2010 (CET)Beantworten

Wo ist denn der Zusammenhang zu diesem Artikel? --P. Birken 15:19, 27. Mär. 2010 (CET)Beantworten
Ich sehe keinen Sinn darin, diesen Link einzubauen. --Tolentino 15:43, 27. Mär. 2010 (CET)Beantworten

Mit dem Dingens kann man differenzieren und sowas. Die Computeralgebra ist ähnlich zu Mathematica, das nehmen die "bequemen" Mathematiker auch. Die Funktionen werden auch visualisiert. Ihr Autoren schreibt doch auch für Leute die Hausaufgaben machen und Links und Orientierungspunkte im Web von der Wikipedia aus suchen. Ich halte Wolfram alpha für ein nützliches Werkzeug.--93.199.224.2 19:30, 11. Apr. 2010 (CEST)Beantworten

man muss halt wissen, dass man oben in dem feld so was schreiben kann wie ln(x^arcsin(x))', und das eben tatsaechlich auch so verstanden wird, wie man es meint. bei bedarf werden auch die zwischenschritte angezeigt. das ist also tatsaechlich eine sinnvolle ergaenzung. man koennte ueberlegen, ob man den link zum function calculator [1] ersetzt. problem ist bloss ist, dass nirgendwo auf dieser seite steht, dass man eine differenziation in das freie feld schreiben soll. vielleicht waere ein link wie [2] besser geeignet als der zur hauptseite. -- seth 12:38, 18. Apr. 2010 (CEST)Beantworten

Unverständlicher Satz

Hallo,

den Artikel Differentialrechnung würde ich als Musterbeispiel an Verständlichkeit für Sekundarstufen-Mathematik bezeichnen, soweit das im Wikipedia-Rahmen möglich ist. Nachdem ich den ganzen Beitrag gelesen habe viel mir nur ein unverständlicher Satz auf. Da gehört mindestens ein hilfreicher Wikilink rein:

In Anlehnung an die Bezeichnung C(Ω) des Raums der auf der Menge Ω stetigen Funktionen wird der Raum der stetig differenzierbaren Funktionen mit C1(Ω) abgekürzt.

Gruß ~ Stündle (Kontakt) 10:13, 14. Sep. 2011 (CEST)Beantworten

Danke für das Lob! Was verstehst Du denn an dem Satz nicht? Den Begriff "Raum"? --P. Birken 16:45, 17. Sep. 2011 (CEST)Beantworten
Ich kann weder erkennen um was für eine Art von Raum es sich handelt, noch um was für eine Art von Menge es sich handelt. Zu deutsch ich verstehe garnichts. ~ Stündle (Kontakt) 17:12, 17. Sep. 2011 (CEST)Beantworten
Jetzt besser?--P. Birken 17:28, 17. Sep. 2011 (CEST)Beantworten
Ein Stück besser, aber der verlinkte Artikel ist auf den ersten Blick nicht besonders vielsagend. Das schaue ich mir die Tage nochmal an, wenn ich den Kopf freier hab. ~ Stündle (Kontakt) 21:51, 21. Sep. 2011 (CEST)Beantworten

Jetzt hab ich mir ein paar Gedanken gemacht und versucht das ganze zu verstehen. Bei C(Ω) handelt es sich um die Gesamtheit aller stetigen Funktionen. Beim nächsten Punkt bin ich mir allerdings schon wieder unsicher. Bei C1(Ω) handelt es sich um alle Ableitungen die eine stetige Funktion bilden. Die hochgestellte 1 steht also für Ableitung und C für Stetigkeit. Andererseits könnte die 1 auch für einen Unterraum stehen so das C nicht für die Ableitung steht sondern für die ursprüngliche Funktion. Sollte ich da richtig liegen sollte es entweder besser beschrieben werden oder einfach rausfliegen. ~ Stündle (Kontakt) 17:29, 22. Sep. 2011 (CEST)Beantworten

Die zweite Interpretation ist im Wesentlichen die richtige. (Die erste wäre sinnlos: Jede stetige Funktion ist Ableitung einer Funktion.) Die hochgestellte 1 steht für (1-mal) differenzierbar, das C für Stetigkeit (der Ableitung). -- Digamma 21:44, 22. Sep. 2011 (CEST)Beantworten
Mit einer leichter verständlichen Formulierung im Artikel wäre die Angelegenheit abgeschlossen. ~ Stündle (Kontakt) 08:44, 5. Okt. 2011 (CEST)Beantworten
Wobei ich Deinen Punkt noch nicht verstehe: An der Stelle wird ja Notation definiert. Möchtest Du jetzt noch eine bessere Erklärung, warum die Notation so ist, wie sie ist? Oder drückt noch woanders der Schuh? Viele Grüße --P. Birken 13:14, 9. Okt. 2011 (CEST)Beantworten
Die gegenwärtige Formulierung halte ich für schwer verständlich und hat im Rahmen meiner Deutsch- und Mathematikkenntnisse offenbar eine fehlerhafte Grammatik. Das sollte konkreter formuliert sein, vergleichbar mit meiner vorletzten Wortmeldung, wenn auch nicht ganz so ausführlich. Zudem gibt es noch folgende vertrackte Fundstelle Stetigkeit#Funktionenr.C3.A4ume_stetiger_Funktionen.
Korrigierte Grammatik? + Verbesserungsvorschläge
In Anlehnung an die Bezeichnung C(Ω) des Raums (Gesamtheit) der stetigen Funktionen auf der Definitionsmenge Ω wird der Raum der stetig differenzierbaren Funktionen mit C1(Ω) abgekürzt.
Stündle (Kontakt) 21:20, 11. Okt. 2011 (CEST)Beantworten
Ich habe es als "der stetigen Funktionen mit Definitionsmenge" umgesetzt und noch Deinen Link übernommen. Jetzt? ;-) --P. Birken 22:04, 24. Okt. 2011 (CEST)Beantworten

Je mehr man in einen Satz packt, desto anstrengender ist es, den eigentlichen Sinn zu erfassen. Vorschlag:

In Anlehnung an die Bezeichnung C(Ω) für die Gesamtheit der stetigen Funktionen auf Ω wird der Raum der stetig differenzierbaren Funktionen mit C1(Ω) abgekürzt.

Gruß – Rainald62 03:21, 25. Okt. 2011 (CEST)Beantworten

Ja, verstehe Deinen Punkt. Mal als Kompromiss Gesamtheit (Raum)? --P. Birken 11:05, 29. Okt. 2011 (CEST)Beantworten

Nichtstandardanalysis

Es fehlt ein Hinweis auf die Nichtstandardanalysis, zumindest bei der Geschichte sollte die einmal erwähnt werden, ich bin mit dem Thema jedoch nicht vertraut. --Chricho ¹ 15:52, 23. Jan. 2012 (CET)Beantworten

Einleitung

Die Einleitung müsste dringend mal überarbeitet werden: Dort wird momentan zweimal hintereinander mit unterschiedlichen Worten das gleiche erklärt (die Ableitung gibt den linearen Zusammenhang zwischen der Änderung des Variablenwerts und des Funktionswerts). Aber der Artikelinhalt wird nicht richtig zusammengefasst, Bedeutung und Anwendungen kommen mMn zu kurz. Und ein wenig mehr zur Geschichte als nur "nach der Vorstellung von Leibniz" sollte in der Einleitung schon stehen. -- HilberTraum (Diskussion) 20:18, 6. Nov. 2012 (CET)Beantworten

Genau: Statt dem Ausflug zu Leibnitz sollte lieber die Zeichnung mit der Tangente, aber ohne die Sekante gezeigt werden. Das Konzept der verschwindent kleinen Änderungen ist nicht einfach zu verstehen und gehört nicht in die Einleitung. Es ist durchaus sinnvoll, der Erklärung der Schule zu folgen, bzw. schon hier die Erklärung von Weierstraß vorzubereiten. --Dr Joerg Weule (Diskussion) 11:35, 31. Mai 2013 (CEST)Beantworten

Eine Quadratische Bézierkurve mit ihren drei Kontrollpunkten läßt sich gut in SVG darstellen und durch die Geraden auf den Kontrollpunkten stetig differenzierbar zu einer Funktion auf ganz erweitern. Die Tangente kann man dann in der Nähe des mittleren Kontrollpunktes einzeichnen. Eine Animation in einem Koordinatensystem wäre hilfreich. --92.79.156.85 12:36, 31. Mai 2013 (CEST)Beantworten

Warum zeitlich formuliert?

"Eine differenzierbare Funktion ist immer stetig, die Umkehrung .." Vorschlag: "Jede ... ist ..." --888344 (Diskussion) 11:02, 12. Mär. 2013 (CET)Beantworten

Hallo 888344! Das ist ein vernünftiger Vorschlag, dem sich wahrscheinlich niemand entgegenstellen wird. Also: Einfach ändern! Liebe Grüße, Franz (Diskussion) 11:15, 12. Mär. 2013 (CET)Beantworten
Hallo Franz! Wie ich sehe, bist Du selber nicht mutig. --888344 (Diskussion) 09:20, 14. Mär. 2013 (CET)Beantworten
Das siehst Du ganz falsch ;-): Ich dachte einfach, daß Du Deine Idee gerne selbst einbringen wolltest.--Franz (Diskussion) 15:21, 14. Mär. 2013 (CET)Beantworten

Fehler bei Ableitung von Potentzfunktionen?

Hallo, im Artikel ist Ableitung von dies hier angegeben

Umgeformt auch als

Ein Vergleich mit Wolfram Alpha http://www.wolframalpha.com/input/?i=derive+f%28x%29%3Dg%28x%29^h%28x%29

liefert einen Fehler. (nicht signierter Beitrag von 92.204.14.28 (Diskussion) 16:51, 22. Mär. 2013 (CET))Beantworten

Hi! Deine Umformung ist falsch, und das Ergebnis bei Wolfram Alpha ist mit dem des Artikels gleichwertig (was man fast unmittelbar einsehen wird, wenn man jenes mit g(x) erweitert). Es ist also alles in Ordnung. Liebe Grüße, Franz (Diskussion) 19:44, 22. Mär. 2013 (CET)Beantworten

Fehler in der 2. Ableitung?

In der 2. Ableitung der Produktionsfunktion hat Mathematica ein anderes Ergebnis errechnet, und zwar: -(4/(-400 + 4 x)^(3/2)) (nicht signierter Beitrag von 89.246.35.52 (Diskussion) 17:56, 23. Mai 2013 (CEST))Beantworten

Das ist doch dasselbe. --Digamma (Diskussion) 19:18, 23. Mai 2013 (CEST)Beantworten

"unangenehme Aussage der ersten Ableitung"

"Wenn Politiker sich erfreut über den „Rückgang des Anstiegs der Arbeitslosenzahl“ äußern, dann sprechen sie von der zweiten Ableitung (Änderung des Anstiegs), um die unangenehme Aussage der ersten Ableitung (Anstieg der Arbeitslosenzahl)"

Ein Anstieg der Arbeitslosenzahl ist ein Erfolg, nicht: "unangenehm". Wenn immer mehr Menschen durch Maschinenarbeit arbeitslos werden, ist das ein gesellschaftlicher Erfolg. Einkommenslosigkeit ist das Problem, nicht Arbeitslosigkeit. (nicht signierter Beitrag von 178.7.236.212 (Diskussion) 21:36, 18. Jul. 2013)

Trennungszeichen

Welchen Grund gibt es bei (Definition - Einführung): "Gesucht sei die Steigung einer Funktion f in einem Punkt ." als Trennungszeichen den senkrechten Strich zu benutzen? Warum nicht, wie üblich, das Semikolon? (nicht signierter Beitrag von 93.135.116.254 (Diskussion) 18:53, 2. Feb. 2014 (CET))Beantworten

Der senkrechte Strich ist auch üblich, insbesondere in der Schulmathematik. --Digamma (Diskussion) 20:35, 2. Feb. 2014 (CET)Beantworten
Der senkrechte Strich ist nur in der Schulmathematik nur in Deutschland üblich, und an ihm hält man wie an soviel Falschem eisern fest. Syntaktisch ergibt dieser senkrechte Strich keinen Sinn. Aus welcher Grundmenge stammt denn das Objekt "(1|2)"? Aus bestimmt nicht. Man stelle sich auch die Frage, was denn mit "der Punkt P(1|2)" gemeint sein soll. Ist P(1|2) der Name des Punkts? Warum nicht - wie schon vor 100 Jahren üblich gewesen - einfach P=(1,2) (oder P=(1;2) wegen der Verwechslung mit dem Dezimalkomma)? Ich streite mich aber nicht; ich hoffe nur noch, dass sich dieser grauenvolle Unfug, der angeblich vor ca. 80 Jahren erfunden worden sein soll, bald biologisch auflöst. --Stefan Neumeier (Diskussion) 17:06, 28. Feb. 2014 (CET)Beantworten
Wir können leider den Unfug, der sich in die Schulmathematik eingeschlichen hat, hier nicht in Wikipedia auflösen. Ich versuche mal eine Erkläru|ng:
1.: An dem senkrechten Strich ist nichts besonderes. Das könnte genauso gut ein ";" oder ein "," sein. Kommas werden nicht verwendet wegen der Verwechslungsmöglichkeit mit dem Dezimalkomma. Der Strich scheint sich irgendwann eingebürgert zu haben. Warum er unsinnig sein soll oder gar falsch, kann ich aber nicht erkennen.
2.: P(1|2) soll wohl bedeuten "der Punkt P mit den Koordinaten (1|2)". Man will dadurch wohl zwischen dem Punkt (einem geometrischen Objekt, einem Element der euklidischen Ebene, die leider keine Kurzbezeichnung hat) und seinen Koordinaten (einem Zahlenpaar aus ) unterscheiden.
3.: Ich habe hier auch Schulbücher aus den letzten 40 Jahren vorliegen, die sich nicht nach dieser Schreibweise richten. Faber Geometrie 1 (Geometrie der Kongruenzabbildungen), Klett Verlag 1971 schreibt "A = (4|5)". Das Buch "bsv mathematik Lineare Geometrie Leistungskurs" Bayrischer Schulbuch-Verlag 1977 schreibt für die Koordinaten eines Punktes A in einem beliebigen affinen Punktraum bezüglich eines fest vorgegebenen Koordinatensystems z.B. "A(6;0;0)" (S. 85, Beispiel 3.18), es benutzt an anderer Stelle aber auch den konkreten Punktraum und schreibt dann z. B. "A := (0;1;1)" (S. 86, Beispiel 3.19) --Digamma (Diskussion) 17:38, 28. Feb. 2014 (CET)Beantworten

Ich bin nochmal die IP von oben. Wie wäre ein Kompromiss: Im gesamten Artikel die mathematisch-übliche Schreibweise (1,2) bzw. (1;2) zu verwenden, mit einen dezenten Hinweis, dass dies in der Schulmathematik auch als (1|2) geschrieben wird. An der Uni habe ich noch nie die Schreibweise mit dem "|" gesehen, denn warum ein zusätzliches Symbol einführen, wenn es durch Komma oder Semikolon bereits verständlich erklärt ist. Das Argument mit dem Ersetzen des Kommas durch ein Semikolon bei Dezimalzahlen kann ich nachvollziehen (bei Verwendung von Variablen in Tupeln ist ein Komma kein Problem.) aber der "|" Strich verkompliziert alles nur unnötig. (nicht signierter Beitrag von 93.133.186.18 (Diskussion) 05:54, 8. Mär. 2014 (CET))Beantworten

Wieso ist da kein Semikolon? Dann besteht keine Verwechslung mit Dezimalzahlkommas und es wird so geschrieben wie in 99% aller math. Texte. Der senkrechte Strich ist unnötig, wozu neue Symbole erfinden wenn die alten klar sind?? (nicht signierter Beitrag von 93.134.239.64 (Diskussion) 16:52, 24. Jul 2014 (CEST))

Die 99% hätte ich gerne belegt. Und der senkrechte Strich ist - wie oben schon geschrieben - in der Schulmathematik üblich (zumindest in Deutschland). Insofern wird da kein neues Symbol erfunden. --Digamma (Diskussion) 18:58, 24. Jul. 2014 (CEST)Beantworten

Tangente2.gif als "anschauliche Darstellung" eher verwirrend?

Im Prinzip wird bei der gif-Datei dargestellt, was eine Tangente ist. Warum das aber eine "Anschauliche Darstellung der Ableitung als Tangentensteigung einer Funktion an der Stelle x0." sein soll, erschließt sich mir nicht. Mir persönlich hat dieses den Einstieg ins Thema erschwert statt erleichtert. (nicht signierter Beitrag von Marco S. (Diskussion | Beiträge) 19:59, 7. Mai 2014 (CEST))Beantworten

Das Bild stellt die Tangente als Grenzfall von Sekanten dar. Die Steigungen der Sekanten sind die Differenzenquotienten; deren Grenzwert ist die Steigung der Tangente. --Digamma (Diskussion) 20:46, 7. Mai 2014 (CEST)Beantworten
Ich habe das Bild nun ausgetauscht. --Digamma (Diskussion) 19:53, 29. Mär. 2018 (CEST)Beantworten

Neugestaltung des Abschnittes Ableitungsregeln

Hallo, vielleicht sollte ich vorweg kurz meine Intention bei den vorgeschlagenen Änderungen erläutern. Ich, Lehramts-Student (Mathe/Chemie), arbeite derzeit an meiner Bachelorarbeit mit dem Ziel einer besseren Verständlichkeit mathematischer (und chemischer) Formelsprache in der Wikipedia. In dem Arbeitskreis in dem ich die Arbeit anfertige ist dies für den Fachbereich Chemie bereits ein über mehrere Jahre erfolgreiches Projekt. Ich bin nun der erste, der aus diesem Bereich versucht etwas in das Fachportal Mathematik einzubringen.

Ich habe diesbezüglich schon ein paar erste Ansätze auf meiner Spielwiese-Mathematik (vor allem was farbliche Gestaltung betrifft) niedergeschrieben. (Diese sind in ihrer Form natürlich noch nicht ausgereift)

Ich würde mich sehr freuen von einigen erfahreneren Mitgliedern konstruktive Kritik, (Verbesserungs)-Vorschläge oder sonstige Kommentare zu den Ideen zu bekommen, da ich ja noch am Anfang meiner "Wikipedia-Laufbahn" stehe.

PS: Sollte das die falsche Anlaufstelle für dieses Anliegen sein, bin ich für jeden Tipp einen passenden Ansprechpartner zu finden sehr dankbar.

Viele Grüße --MaFecht93 (Diskussion) 09:52, 24. Jun. 2014 (CEST)Beantworten

Die richtige Anlaufstelle dürfte die Diskussionseite des Portals Mathematik sein: Portal Diskussion:Mathematik. --Digamma (Diskussion) 16:49, 24. Jun. 2014 (CEST)Beantworten
Vorschlag:
Konstante Funktion Faktorregel Summenregel Produktregel
Funktion Ableitung Funktion Ableitung Funktion Ableitung Funktion Ableitung
Quotientenregel Reziprokenregel Kettenregel Potenzregel
Funktion Ableitung Funktion Ableitung Funktion Ableitung Funktion Ableitung
Meiner Meinung nach stellt eine Tabelle wie die obige eine Verbesserung zur bisher vorhandenen Aufzählung dar. (Vor allem aufgrund von Übersichtlichkeit und Kompaktheit nicht zuletzt auch auf mobilen Endgeräten.)
Außerdem sind in den einzelnen Artikeln zu den jeweiligen Ableitungsregeln sehr uneinheitlich konrekte Zahlbeispiele angegeben (Kettenregel und Quotientenregel). Wäre es nicht sinnvoll zur Veranschaulichung alle Ableitungsregeln mit kurzen Beispielen zu verdeutlichen? Oder alternativ diese konsequent auszulagern, z.B. auf Wikibooks?
--MaFecht93 (Diskussion) 12:34, 13. Aug. 2014 (CEST)Beantworten
Ich finde das nicht übersichtlicher. Und für Kompaktheit sehe ich keinen Grund.
Bei den Einzelartikeln spricht meiner Meinung nach nichts dagegen, überall konkrete Beispiele anzugeben. --Digamma (Diskussion) 12:50, 13. Aug. 2014 (CEST)Beantworten

Ordnung der Darstellung

Die Beispiele der nicht überall differenzierbaren bzw. stetig differenzierbaren Funktionen liegen unlogisch. Es sollte eine spezielle Sektion über Differenzierbarkeit und stetige Differenzierbarkeit geben. Unter dem ersten Beispiel steht ein weiterer Beispiel, der in der Überschrift nicht gewähnt wird.

Die zwei letzten Ableitungsregeln betreffen mehrfache Ableitungen, die an jener Stelle noch nicht systematisch eingeführt sind. Sie sollten in die Sektion für mehrfache Ableitungen. Andres (Diskussion) 09:50, 6. Aug. 2014 (CEST)Beantworten

Im Abschnitt "Beispiel für eine nicht überall differenzierbare Funktion" werden die linksseitige Ableitung und die rechtsseitige Ableitung wiederholt abgegeben. Ist es nötig? Andres (Diskussion) 18:08, 6. Aug. 2014 (CEST)Beantworten

Notation

Im Abschnitt ist mir zu viel "eigentlich". Warum ist es kein Bruch, warum rechnet man fast normal? Andersherum, wenn das unabhängige Differential klar ist und immer gleich einem h, ist da nichts mehr eigentlich, sondern siehe Courant alles in Ordnung. --Room 608 (Diskussion) 20:21, 9. Nov. 2014 (CET)Beantworten

Zusammenhang von zweiter Ableitung und Krümmung einer Kurve

Der Satz "Die zweite Ableitung kann geometrisch als die Krümmung eines Graphen interpretiert werden." ist so nicht richtig. Im verlinkten Artikel "Krümmung" kann man nachlesen, dass die Krümmung einer Kurve auch von der ersten Ableitung abhängt (sogar stärker als von der 2ten Ableitung). Am Beispiel x² sollte das auch sofort klar werden, da die Krümmung dort ja nicht in jedem Punkt gleich ist.

Bitte an jemanden mit Ahnung vom Gesamtartikel den Satz zu korriegieren. (nicht signierter Beitrag von 2A02:8071:69C:2300:D14C:496C:5858:EF11 (Diskussion | Beiträge) 12:25, 8. Jun. 2015 (CEST))Beantworten

Danke für den wertvollen Hinweis. Die falsche Textstelle habe ich soeben vorerst mal ersatzlos gestrichen. Wer meint, daß man sie stattdessen durch Anderes ersetzen sollte, möge dies einfach tun. Liebe Grüße, Franz 13:18, 8. Jun. 2015 (CEST)Beantworten
Ganz so einfach kann man die Krümmung aber nicht vom Tisch wischen, denn der Wert der zweiten Ableitung zeigt zumindest, ob eine Kurve links- oder rechtsgekrümmt ist:
==> Linkskrümmung;
==> Rechtskrümmung;
Gruß --Udo (Diskussion) 20:11, 8. Jun. 2015 (CEST)Beantworten

Differentialrechnung#Alternative Herleitung über die Analysis der endlichen Differenzen

@Lexikon-Duff: Der neu angefügte Abschnitt passt m.E. nicht so recht in den Artikel. Das soll ein Übersichtsartikel über die Differentialrechnung sein. Der Abschnitt ist aber viel zu detailreich und fügt sich auch nicht in die Artikelstruktur ein. Mir ist auch überhaupt nicht klar, was das soll. --Digamma (Diskussion) 18:40, 21. Jun. 2015 (CEST)Beantworten

Beim nochmaligen Durchlesen: Das passt nicht in diesen Artikel. Ich entferne es deshalb. Gruß, --Digamma (Diskussion) 18:44, 21. Jun. 2015 (CEST)Beantworten

Achso. Hm hättest du eine Idee wo ich das sonst reingeschreiben kann? Es ist einfach nur eine alternative Erklärung, mehr nicht. Übrigens ist es umgekehrt. Der Rest des Artikels fügt sich nicht in meinen geschriebenen Abschnitt ein. Also bitte verbessern. Das ist auch der richtige historische Weg.--Lexikon-Duff (Diskussion) 21:31, 21. Jun. 2015 (CEST)Beantworten

Neoklassische Produktionsfunktion

Ich habe im Abschnitt Beispiel für angewandte Differentialrechnung eine Baustein eingefügt. Der Abschnitt muss überarbeitet werden, da die Funktion nicht neoklassich ist. Eigenschaften einer neoklassischen Produktionsfunktion sind:

-kostante und abnehmende Grenzerträge

-positive und abnehmende Grenzerträge

-abnehmende Grenzrate der Substitution

-Inada-Bedingungen müssen erfüllt sein

,aus diesem grund schlage ich vor hier als Beispiel du Funktion mit zu nehmen, da sie die o.g. Eigenschaften erfüllt.

--J.C.Delgado 17:22, 28. Sep. 2016 (CEST)

Inhaltlich kann ich das nicht beurteilen. Aber in der jetzigen Form halte ich das Beispiel nicht für geeignet, weil viel zu kompliziert für diesen Einführungs-/Überblicksartikel. Man sollte es dann eher ganz weglassen. --Digamma (Diskussion) 14:05, 30. Sep. 2016 (CEST)Beantworten
Aber eine Frage dazu: Warum wird das als Funktion von der Zeit t formuliert? Die Funktion F hängt doch nur von K und L ab. Wenn man K und L als Funktion der Zeit schreibt, wird die Sache nur verkompliziert: Man hat es nicht nur mit einer Funktion von zwei Variablen zu tun, sondern außerdem mit einer Verkettung. --Digamma (Diskussion) 14:10, 30. Sep. 2016 (CEST)Beantworten
Noch eine Ergänzung: Im Artikel Ertragsgesetz, auf den Neoklassische Produktionsfunktion weiterleitet, steht leider dazu nichts konkretes. In Einzelnachweis 4 findet man aber http://www.luk-korbmacher.de/Schule/VWL/Unternehmen/unter06.htm . Dort wird nur eine Funktion von einer Variablen betrachtet. --Digamma (Diskussion) 14:15, 30. Sep. 2016 (CEST)Beantworten
@Digamma:Die Eigenschaften werden bei dieser PDF auf S. 3 und 4 ganz gut beschreiben http://www.sfu.ca/~bkrauth/econ808/808_lec1.pdf ..sie müssten aber auch hier http://www.ppge.ufrgs.br/giacomo/arquivos/eco02237/acemoglu-2007.pdf zu finden sein. Die Zeitindizes sind eigentlich nicht notwendig die könnte man auch weglassen, jedoch werden sie oft gebraucht, um die Dynamik im Modell und eine Konvergenz zu einem Gleichgewicht darzustellen... siehe Solow-Modell--J.C.Delgado 22:50, 30. Sep. 2016 (CEST)

Lectiones de calculo differentialum

Die Ausführungen des Abschnitts Leben aus dem neuen Artikel Paul Schafheitlin sollten in den hiesigen Abschnitt Geschichte Einzug finden. Übernimmt das jemand? -- Uwe Martens (Diskussion) 04:12, 14. Sep. 2017 (CEST)Beantworten

Einleitung unverständlich

Ich habe dieses Lemma aufgerufen, weil ich meine Vorstellung überprüfen wollte, ob, wenn der deutsche CO2-Ausstoß langsamer steigt als im Vorjahr, sich dann die erste Ableitung geändert hat. dies gelang mir aber nicht, weil die Einleitung für einen mittelintelligenten Mathelaien wie mich nicht nachvollziehbar ist. Woher soll ich denn bitte wissen, was Tangentensteigung bedeutet, was Proportionalitätsfaktor, was approximiert oder Linearisierung? Wenn ich so viel Mathe könnte, dass ich das wüsste, brauchte ich zur Beantwortung meiner Frage nicht diesen Artikel aufzurufen: Wer mathematische Fachausdrücke mit anderen mathematischen Fachausdrücken erklärt, erklärt sie nicht, das ist hier eigentlich ein Fall für den Mangelbaustein {{Allgemeinverständlichkeit}}: Die Einleitung eines Artikels erklärt in groben Zügen und in allgemein verständlicher Sprache, was der Begriff bedeutet und wie er verwendet wird oder was das Thema des Artikels ist. Die Einleitung dieses Artikels tut irgendetwas anderes, allgemeinverständlich erklären tut sie aber leider nicht. --Φ (Diskussion) 17:18, 29. Mär. 2018 (CEST)Beantworten

Die Frage, auf die du eine Antwort suchst, hat erstmal gar nichts mit Differentialrechnung zu tun, da es nicht um momentane Änderungsraten, sondern um die Änderung in einem Zeitintervall, also um mittlere Änderungsraten geht.
Dass dich die Einleitung des Artikels erschlägt, hängt damit zusammen.
Die Ableitung ist die Steigung, aber nicht die Steigung über ein Jahr hinweg, sondern die Steigung in einem Moment. Trägt man den CO2-Ausstoß in einem Diagramm über der Zeitachse auf, dann ist die momentane Steigung die Steigung einer Tangente an dieses Diagramm. --Digamma (Diskussion) 17:43, 29. Mär. 2018 (CEST)Beantworten
Wenn man Ableitung sucht, findet man einen Hinweis auf diesen Artikel. Insofern hat die Frage entweder durchaus was mit Differentialrechnung zu tun, oder der Hinweis ist schlichtweg irreführend.
Erst schreibst du, es ginge „nicht um momentane Änderungsraten“, dann „ist“ die Ableitung „die Steigung in einem Moment“. Ich kann dir gerade nicht folgen. Ich lass mir das am besten mal von einem befreundeten Mathematiker mündlich erklären.
Das Problem, um das es mir hier geht, ist dass die Einleitung für Laien unverständlich ist. --Φ (Diskussion) 17:52, 29. Mär. 2018 (CEST)Beantworten
Das habe ich verstanden. Ich glaube nur nicht, dass es möglich ist, die Ableitung zu erklären, ohne Begriffe wie "Tangentensteigung" zu verwenden. Der Begriff der Ableitung ist eben nicht so einfach.
Es ist aber möglich, die Aussage über den CO2-Ausstoß zu verstehen und zu interpretieren, ohne über Ableitungen zu sprechen. Wenn man mit dem Begriff der Ableitung vertraut ist, dann ist es vielleicht sinnvoll, die Aussage über den CO2-Ausstoß mit der Ableitung in Verbindung zu bringen. Man braucht das aber nicht. Wenn man mit dem Begriff der Ableitung nicht vertraut ist, dann gewinnt man daraus auch nichts, denn dann formuliert man nur eine verständliche Aussage in eine unverständliche um. --Digamma (Diskussion) 18:07, 29. Mär. 2018 (CEST)Beantworten
Deine Aussage, dass sich ein so grundlegender Begriff nicht laienverständlich erklären lässt, ist eine Bankrotterklärung. Wozu gibt es denn diesen Wikipedia-Artikel, wenn intelligente Laien notwendig außerstande sind, ihm irgendwelche Informationen zu entnehmen? Die Fachleute wissen das alles doch auch so.
Mannmannmann. Frohe Ostern --Φ (Diskussion) 18:11, 29. Mär. 2018 (CEST)Beantworten
Das habe ich nicht gesagt. Aber man muss bereit sein, sich auf mathematische Begriffe einzulassen. Wenn du gleich sagst, ich kann das nicht vestehen, weil da mathematische Fachbegriffe verwendet werden, dann funktioniert das nicht.
"Erst schreibst du, es ginge „nicht um momentane Änderungsraten“, dann „ist“ die Ableitung „die Steigung in einem Moment“. Ich kann dir gerade nicht folgen." Genau. Bei der Ableitung geht es um momentane Änderungsraten. Bei deinen Aussagen über den CO2-Ausstoß aber nicht. Deshalb ist dir mit dem Artikel über Differentialrechnung nicht geholfen. --Digamma (Diskussion) 18:36, 29. Mär. 2018 (CEST)Beantworten
Nach WP:LAIE soll die Einleitung „in allgemein verständlicher Sprache“ verfasst sein. Das ist hier erkennbar nicht der Fall. --Φ (Diskussion) 18:46, 29. Mär. 2018 (CEST)Beantworten
Gut. Aber die Konsequenz wäre wahrscheinlich, das schwer Verständliche einfach zu streichen. Dann bliebe nur eine Einordnung des Themas übrig.
Ein Problem besteht natürlich darin, dass es keinen eigenen Artikel zur Ableitung gibt, sondern nur diesen Überblicksartikel. Deshalb möchte auch die Einleitung zuviel auf einmal erklären.
Da die Mathematik eine in sich abgeschlossene Wissenschaft ist, ist es grundsätzlich nur möglich, mathematische Begriffe mit mathematischen Begriffen zu erklären. Man kann nur versuchen, einfachere mathematische Begriffe zu verwenden. Mit außermathematischen Begriffen kann man Mathematik aber nicht erklären, sondern höchstens illustrieren und veranschaulichen.
Die Tangente wird in der Grafik veranschaulicht, "Steigung" ist verlinkt. Dasselbe gilt für "Proportionalität". Natürlich kann man das besser machen, aber dafür muss man erst einmal einen Autor finden, der das kann und tun will. --Digamma (Diskussion) 19:02, 29. Mär. 2018 (CEST)Beantworten
Wie gesagt: Hier wird in einem angeblich exzellenten Artikel auf Verständlichkeit schlankweg verzichtet. Ich behalte mir vor, den o.g. Baustein zu setzen. --Φ (Diskussion) 19:12, 29. Mär. 2018 (CEST)Beantworten
Hallo Phi und Diagamma. Bin zufällig auf diese Diskussion gestoßen, weil ich die Seite auf meiner BEO habe. Prinzipiell Zustimmung zu Diagamma. Dies ist ein allgemeines Problem, was fast alle Matheartikel betrifft. WP:LAIE kann auch nicht die Tatsachen ändern, dass die Mathematik unabhängig von Raum und Zeit Gültigkeit besitzt und daher nicht leicht verständlich ist. Ich bin der Meinung, die meisten Mathe-Artikel lassen sich nicht einfacher Darstellen, weil die Materie intrinsisch eben nicht einfach ist. Beste Grüße.--Jonski (Diskussion) 19:23, 29. Mär. 2018 (CEST)Beantworten