Zum Inhalt springen

Benutzer:Scabba/Artificial enzyme

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 26. Juni 2016 um 12:57 Uhr durch 114.212.212.232 (Diskussion) (References). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Vorlage:For Vorlage:Refimprove

Schematic drawing of artificial phosphorylase

An artificial enzyme is a synthetic, organic molecule or ion that recreate some function of an enzyme. The area promises to deliver catalysis at rates and selectivity observed in many enzymes.

History

Enzyme catalysis of chemical reactions occur with high selectivity and rate. The substrate is activated in a small part of the enzyme's macromolecule called the active site. There, the binding of a substrate close to functional groups in the enzyme causes catalysis by so-called proximity effects. It is possible to create similar catalysts from small molecule by combining substrate-binding with catalytic functional groups. Classically artificial enzymes bind substrates using receptors such as cyclodextrin, crown ethers, and calixarene.[1][2]

Artificial enzymes based on amino acids or peptides as characteristic molecular moieties have expanded the field of artificial enzymes or enzyme mimics. For instance, scaffolded histidine residues mimics certain metalloproteins and -enzymes such as hemocyanin, tyrosinase, and catechol oxidase).[3]

Nanozymes

Nanozymes are nanomaterials with enzyme-like characteristics.[4] They have been widely explored for various applications, such as biosensing, bioimaging, tumor diagnosis and therapy, antibiofouling.[5][6][7][8] In 2006, nanoceria (i.e., CeO2 nanoparticles) was used for preventing retinal degeneration induced by intracellular peroxides.[9][10] In 2007, Xiyun Yan, Sarah Perrett and coworkers reported that ferromagnetic nanoparticles possessed intrinsic peroxidase-like activity.[11][12] In 2008, Hui Wei and Erkang Wang developed an iron oxide nanozyme based sensing platform for bioactive molecues (such as hydrogen peroxide and glucose).[13] In 2012, recombinant human heavy-chain ferritin coated iron oxide nanoparticle with peroxidase-like activity was prepared and used for targeting and visualizing tumour tissues.[14] In 2012, vanadium pentoxide nanoparticles with vanadium haloperoxidase mimicking activities were used for preventing marine biofouling.[15] In 2015, a supramolecular regulation strategy was proposed to modulate the activity of gold-based nanozymes for imaging and therapeutic applications.[16][17] A nanozyme-strip for rapid local diagnosis of Ebola was developed.[18][19] An integrated nanozyme has been developed for real time monitoring the dynamic changes of cerebral glucose in living brains.[20][21]


Nanozymes (Conferences & Meetings)

Several conferences (meetings) have been focused on the nanozymes. In 2015, a workshop for nanozyme has been held in 9th Asian Biophysics Associatation (ABA) Symposium.[22] In Pittcon 2016, a Networking entitled "Nanozymes in Analytical Chemistry and Beyond" was devoted to nanozymes.[23]

Datei:C3cs35486e-f1.gif
Timeline of Nanozymes (from Chem Soc Rev)

See also

References

Vorlage:Reflist

  1. Wiley: Artificial Enzymes - Ronald Breslow. In: as.wiley.com. Abgerufen am 11. Dezember 2015.
  2. Anthony J Kirby, Florian Hollfelder: From Enzyme Models to Model Enzymes. 2009, ISBN 978-0-85404-175-6, doi:10.1039/9781847559784 (rsc.org).
  3. Scaffolded amino acids as a close structural mimic of type-3 copper binding sites. H. Bauke Albada, Fouad Soulimani, Bert M. Weckhuysen and Rob M. J. Liskamp, Chem. Commun., 2007, pages 4895-4897, doi:10.1039/B709400K
  4. Hui Wei, Erkang Wang: Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. In: Chemical Society Reviews. 42. Jahrgang, Nr. 14, 21. Juni 2013, ISSN 1460-4744, doi:10.1039/C3CS35486E (englisch, rsc.org).
  5. 阎锡蕴: 纳米材料新特性及生物医学应用. 第1版 Auflage. 科学出版社, 北京, ISBN 978-7-03-041828-9 (amazon.cn).
  6. Zerong Wang: Encyclopedia of Physical Organic Chemistry, 5 Volume Set. Edición: Volumes 1 - 5. Auflage. John Wiley & Sons Inc, Place of publication not identified, ISBN 978-1-118-47045-9 (amazon.es).
  7. Nanozyme brief history.
  8. Xiaoyu Wang, Yihui Hu, Hui Wei: Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. In: Inorg. Chem. Front. 3. Jahrgang, Nr. 1, S. 41–60, doi:10.1039/c5qi00240k (englisch, doi.org).
  9. Junping Chen, Swanand Patil, Sudipta Seal, James F. McGinnis: Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:. In: Nature Nanotechnology. 1. Jahrgang, Nr. 2, 1. November 2006, ISSN 1748-3387, S. 142–150, doi:10.1038/nnano.2006.91 (englisch, nature.com).
  10. Gabriel A. Silva: Nanomedicine: Seeing the benefits of ceria. In: Nature Nanotechnology. 1. Jahrgang, Nr. 2, 1. November 2006, ISSN 1748-3387, S. 92–94, doi:10.1038/nnano.2006.111 (englisch, nature.com).
  11. Lizeng Gao, Jie Zhuang, Leng Nie, Jinbin Zhang, Yu Zhang, Ning Gu, Taihong Wang, Jing Feng, Dongling Yang: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. In: Nature Nanotechnology. 2. Jahrgang, Nr. 9, 1. September 2007, ISSN 1748-3387, S. 577–583, doi:10.1038/nnano.2007.260 (englisch, nature.com).
  12. J. Manuel Perez: Iron oxide nanoparticles: Hidden talent. In: Nature Nanotechnology. 2. Jahrgang, Nr. 9, 1. September 2007, ISSN 1748-3387, S. 535–536, doi:10.1038/nnano.2007.282 (englisch, nature.com).
  13. Hui Wei, Erkang Wang: Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. In: Analytical Chemistry. 80. Jahrgang, Nr. 6, 15. März 2008, ISSN 0003-2700, S. 2250–2254, doi:10.1021/ac702203f (doi.org).
  14. Kelong Fan, Changqian Cao, Yongxin Pan, Di Lu, Dongling Yang, Jing Feng, Lina Song, Minmin Liang, Xiyun Yan: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. In: Nature Nanotechnology. 7. Jahrgang, Nr. 7, 1. Juli 2012, ISSN 1748-3387, S. 459–464, doi:10.1038/nnano.2012.90 (englisch, nature.com).
  15. Filipe Natalio, Rute André, Aloysius F. Hartog, Brigitte Stoll, Klaus Peter Jochum, Ron Wever, Wolfgang Tremel: Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. In: Nature Nanotechnology. 7. Jahrgang, Nr. 8, 1. August 2012, ISSN 1748-3387, S. 530–535, doi:10.1038/nnano.2012.91 (englisch, nature.com).
  16. Gulen Yesilbag Tonga, Youngdo Jeong, Bradley Duncan, Tsukasa Mizuhara, Rubul Mout, Riddha Das, Sung Tae Kim, Yi-Cheun Yeh, Bo Yan: Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. In: Nature Chemistry. 7. Jahrgang, Nr. 7, 1. Juli 2015, ISSN 1755-4330, S. 597–603, doi:10.1038/nchem.2284 (englisch, nature.com).
  17. Asier Unciti-Broceta: Bioorthogonal catalysis: Rise of the nanobots. In: Nature Chemistry. 7. Jahrgang, Nr. 7, 1. Juli 2015, ISSN 1755-4330, S. 538–539, doi:10.1038/nchem.2291 (englisch, nature.com).
  18. Demin Duan, Kelong Fan, Dexi Zhang, Shuguang Tan, Mifang Liang, Yang Liu, Jianlin Zhang, Panhe Zhang, Wei Liu: Nanozyme-strip for rapid local diagnosis of Ebola. In: Biosensors and Bioelectronics. 74. Jahrgang, 15. Dezember 2015, S. 134–141, doi:10.1016/j.bios.2015.05.025 (sciencedirect.com).
  19. Elsevier: New Ebola test to make diagnosis easier, faster and cheaper. In: www.elsevier.com. Abgerufen am 10. Juni 2016.
  20. Hanjun Cheng, Lei Zhang, Jian He, Wenjing Guo, Zhengyang Zhou, Xuejin Zhang, Shuming Nie, Hui Wei: Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. In: Analytical Chemistry. 12. April 2016, ISSN 0003-2700, doi:10.1021/acs.analchem.6b00975 (doi.org).
  21. Integrated nanozymes for brain chemistry. In: phys.org. Abgerufen am 17. April 2016.
  22. Workshop for nanozymes.
  23. Nanozymes at Pittcon 2016.