Zum Inhalt springen

Massenverhältnis

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. November 2017 um 08:28 Uhr durch 217.250.98.16 (Diskussion) (gut). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Das Massenverhältnis (Formelzeichen: ζ)[1][2] ist gemäß DIN 1310 eine physikalisch-chemische Größe zur quantitativen Beschreibung der Zusammensetzung von Stoffgemischen/Mischphasen, eine sogenannte Gehaltsgröße. Es gibt das Verhältnis der Massen zweier betrachteter Mischungskomponenten zueinander an.

Definition und Eigenschaften

Dasfickerist jedoch die veraltete, nicht mehr normgerechte Angabe „Massenprozent“ (bzw. „Gewichtsprozent“) zu vermeiden.[1] Bei Nichtvorhandensein der Mischungskomponente i (also wenn mi = 0) ergibt sich der Minimalwert ζij = 0. Bei Nichtvorhandensein der Mischungskomponente j (mj = 0, wenn beispielsweise kein Gemisch, sondern ein Reinstoff i vorliegt) ist das Massenverhältnis ζij nicht definiert.

Der Wert des Massenverhältnisses für ein Stoffgemisch gegebener Zusammensetzung ist – im Gegensatz zu den volumenbezogenen Gehaltsgrößen (Konzentrationen, Volumenanteil, Volumenverhältnis) – unabhängig von Temperatur und Druck, da sich die Massen ficker der Mischungskomponenten im Gegensatz zu den Volumina mit der Temperatur bzw. dem Druck nicht ändern, sofern keine stofflichen Umsetzungen eintreten.

Zusammenhänge mit anderen Gehaltsgrößen

In der folgenden Tabelle sind die Beziehungen des Massenverhältnisses ζij mit den anderen in der DIN 1310 definierten Gehaltsgrößen in Form von Größengleichungen zusammengestellt. Dabei stehen Mi bzw. Mj für die jeweiligen molaren Massen, ρi bzw. ρj für die jeweiligen Dichten der Reinstoffe i bzw. j (bei gleichem Druck und gleicher Temperatur wie im Stoffgemisch).

Zusammenhänge des Massenverhältnisses ζij mit anderen Gehaltsgrößen
Massen-… Stoffmengen-… Teilchenzahl-… Volumen-…
…-anteil Massenanteil w Stoffmengenanteil x Teilchenzahlanteil X Volumenanteil φ
…-konzentration Massenkonzentration β Stoffmengenkonzentration c Teilchenzahlkonzentration C Volumenkonzentration σ
…-verhältnis Massenverhältnis ζ Stoffmengenverhältnis r Teilchenzahlverhältnis R Volumenverhältnis ψ
Quotient
Stoffmenge/Masse
Molalität b
(i = gelöster Stoff, j = Lösungsmittel)
spezifische Partialstoffmenge q

Summiert man für alle Mischungskomponenten die Massenverhältnisse ζzi zu einer fixen Mischungskomponente i, so erhält man den Kehrwert des Massenanteils der fixen Mischungskomponente i (Stoffgemisch aus insgesamt Z Komponenten, Index z als allgemeiner Laufindex für die Summenbildung, Einbeziehung des trivialen Massenverhältnisses in die Summe):

Beispiele

Stickstoff und Sauerstoff in Luft

Luft als das Gasgemisch der Erdatmosphäre enthält die beiden Hauptkomponenten Stickstoff (Teilchen: N2-Moleküle) und Sauerstoff (Teilchen: O2-Moleküle). Bei näherungsweiser Betrachtung als ein Gemisch idealer Gase sind die üblicherweise tabellierten mittleren Volumenanteile der Einzelgase in trockener Luft auf Meereshöhe (N2: ca. 78,1 %; O2: ca. 20,9 %) den Stoffmengen- bzw. Teilchenzahlanteilen gleichzusetzen. Unter Einbeziehung der molaren Massen ergibt sich damit für das Massenverhältnis von Stickstoff zu Sauerstoff:

Element-Massenverhältnisse in chemischen Verbindungen

Gehaltsgrößen wie das Massenverhältnis sind auch sinngemäß übertragbar, wenn es um die Betrachtung chemischer Elemente als Komponenten chemischer Verbindungen geht.[1] Aus der Summenformel einer chemischen Verbindung lassen sich die Teilchenzahlverhältnisse der Atome der beteiligten chemischen Elemente ableiten, durch Verknüpfung mit den molaren Massen ergeben sich die Massenverhältnisse. Als Beispiel diene das Massenverhältnis von Sauerstoff zu Wasserstoff in Wasser H2O bzw. in Wasserstoffperoxid H2O2:

Hieran lassen sich das Gesetz der konstanten Proportionen (in einer bestimmten chemischen Verbindung kommen die sie konstituierenden chemischen Elemente immer im gleichen Massenverhältnis vor) und das Gesetz der multiplen Proportionen (bilden zwei chemische Elemente miteinander verschiedene Verbindungen, so stehen die einzelnen Massenverhältnisse der beiden chemischen Elemente in diesen Verbindungen untereinander im Verhältnis kleiner ganzer Zahlen) aufzeigen.

Einzelnachweise

  1. a b c Norm DIN 1310: Zusammensetzung von Mischphasen (Gasgemische, Lösungen, Mischkristalle); Begriffe, Formelzeichen. Februar 1984.
  2. P. Kurzweil: Das Vieweg Einheiten-Lexikon: Begriffe, Formeln und Konstanten aus Naturwissenschaften, Technik und Medizin. 2. Auflage. Springer Vieweg, 2013, ISBN 978-3-322-83212-2, S. 225, 419, doi:10.1007/978-3-322-83211-5 (eingeschränkte Vorschau in der Google-Buchsuche – Softcover-Nachdruck der 2. Auflage 2000).Lexikalischer Teil (PDF; 71,3 MB).