Wachstum (Mathematik)
Als Wachstum bezeichnet man den zeitlichen Anstieg einer bestimmten Messgröße. Es kann daher als mathematische Ableitung einer Funktion aufgefasst werden, die zu jedem Zeitpunkt einen bestimmten Wert der Messgröße zuordnet.
Das Gegenteil von Wachstum ist die Abnahme, im Falle von Volumenabnahme Schrumpfung genannt, beziehungsweise der Zerfall. In diesem Zusammenhang fällt oft der von der mathematischen Modellierung abgeleitete und umgangssprachlich missverstandene Begriff Negativwachstum.
Mathematische Beschreibung
Wachstum ist das zeitliche Verhalten einer System-Messgröße. Zunächst wird zu einem bestimmten Zeitpunkt der Wert dieser Größe bestimmt. Zu einem späteren Zeitpunkt wird der Wert dieser Größe wieder bestimmt.
Ist dieser zweite Wert größer als der erste , dann spricht man von positivem Wachstum. Dieser Fall entspricht dem allgemeinen Sprachgebrauch.
Ist kleiner als , ist also die Differenz , spricht man von negativem Wachstum.
Im Falle spricht man von Nullwachstum.
Darstellung von Wachstumskurven
Bei zahlreichen Messpunkten werden diese zur Veranschaulichung in einem Diagramm dargestellt, meistens als geschlossener Kurvenzug. Dabei sollte aber nicht vergessen werden, dass das tatsächliche Verhalten des Systems zwischen den Messpunkten wegen der Zeitdiskretisierung nicht bekannt ist und höchstens durch ein mehr oder weniger genaues Modell beschreibbar ist. Bei bestimmten Wachstumsarten können auch mathematische Modelle (Funktionen) zur Beschreibung des Verhaltens in einem Funktionsgraph Verwendung finden.
Wachstumsarten
Nach Zeitverlauf
Wachstum lässt sich nach der Art seiner Zeitverläufe charakterisieren, wie er im Graphen Messgröße x vs. Zeit t dargestellt ist.
- begrenzt oder unbegrenzt: Alle realen Wachstumsvorgänge sind letztlich begrenztes Wachstum, da die Ressourcen, aus welchen sich das Wachstum, speist, nicht unbegrenzt vorliegen oder das Wachstum auf andere Weise schon vor dem Erschöpfen der Ressourcen begrenzt wird und einem dynamischen Gleichgewicht zustrebt (zum Beispiel beim Räuber-Beute-System). Unbegrenztes Wachstum ist damit ein mathematisches Artefakt; die Annahme, dass in der Realität etwas unbegrenzt wachsen könne (z.B. langfristig echt positives Wirtschaftswachstum), ist daher nicht haltbar.
- linear (konstant) oder exponentiell (beschleunigt oder verzögert = negativ beschleunigt) Der Radioaktive Zerfall ist ein Beispiel für exponentielles, verzögertes, negatives Wachstum.
- (scheinbar) kontinuierlich oder diskontinuierlich. (Beispiel: Die Längenzunahme des Menschen während der Wachstumsperiode erfolgt in Schüben.)
Wachstumsschwankungen
Dem Trend ist eine Schwankung zwischen mehreren Grenzwerten überlagert:
- Periodische Schwankungen (beispielsweise bei Systemen mit Rückkopplung) können ungedämpft, gedämpft oder aufschaukelnd sein.
- Aperiodische Schwankungen (Fluktuationen) können zufallsbedingt oder chaotisch sein.
Nach Einheiten der Messgröße
Raumdimensionen
- Strecken
- Wachstum der Länge des Schienennetzes
- Flächen
- Wachstum der versiegelten Flächen
- Volumen
- Größerwerden eines Luftballons
Kombinationen daraus findet man beim Wachstum eines Organismus als Ganzes oder seiner Teile: Zellwachstum, Längenwachstum des Menschen; siehe auch Wachstumshormon und Kleinwuchs.
Zunahme der absoluten Menge oder des Prozentsatzes, Vermehrung: Bevölkerungswachstum, Bakterienkultur, Geldwachstum.
Das Infekt-Modell ist eine Rückkopplungsfunktion, die Ausbreitungsvorgänge (Krankheiten, Gerüchte, Witze ...) in geschlossenen Populationen beschreibt (s. Bild begrenztes Wachstum). Siehe auch Feigenbaumdiagramm.
Wachstum eines Indexes
Wirtschaftswachstum beschreibt das Wachstum einer Volkswirtschaft. Parametrisiert wird dieses u.a. durch das Bruttosozialprodukt.
Wachstum der Komplexität
Siehe dazu Internet, Informationsflut, Gehirn
Siehe auch
Diffusionsbegrenztes Wachstum (diffusion limited aggregation)
Literatur
Populärwissenschaftliche Literatur
- Johannes M. Waidfeld: Wachstum, der Irrtum Wohlstand, eine gesellschaftliche Betrachtung. Fischer & Fischer Medien AG, Frankfurt 2005, ISBN 3-89950-076-8, http://waidfeld.de.tk/index.html