Zum Inhalt springen

Wahrscheinlichkeitsfunktion

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 1. Dezember 2016 um 13:43 Uhr durch NikelsenH (Diskussion | Beiträge) (entkernt und renoviert). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Wahrscheinlichkeitsfunktion eines fairen Würfels. Alle Augenzahlen haben die gleiche Wahrscheinlichkeit 1/6.

Eine Wahrscheinlichkeitsfunktion, auch Zähldichte genannt,[1] ist eine spezielle reellwertige Funktion in der Stochastik. Wahrscheinlichkeitsfunktionen werden zur Konstruktion und Untersuchung von Wahrscheinlichkeitsverteilungen, genauer diskreten Wahrscheinlichkeitsverteilungen verwendet. Dabei kann jeder diskreten Wahrscheinlichkeitsverteilung eine eindeutige Wahrscheinlichkeitsfunktion zugeordnet werden. Umgekehrt definiert jede Wahrscheinlichkeitsfuntion eine eindeutig bestimmte diskrete Wahrscheinlichkeitsverteilung.

In den meisten Fällen werden Wahrscheinlichkeitsfunktionen auf den natürlichen Zahlen definiert. Sie ordnen dann jeder Zahl die Wahrscheinlichkeit zu, dass diese Zahl auftritt. So würde bei der Modellierung eines fairen Würfels die Wahrscheinlichkeitsfunktion den Zahlen von eins bis sechs jeweils den Wert zuordnen und allen anderen die null.

Aus der Sicht der Maßtheorie handelt es sich bei Wahrscheinlichkeitsfunktionen um spezielle Dichtefunktionen (im Sinne der Maßtheorie) bezüglich des Zählmaßes Diese werden im allgemeineren Kontext auch Gewichtsfunktionen genannt.[2]

Definition

Zur Konstruktion von Wahrscheinlichkeitsverteilungen

Gegeben sei eine Funktion

,

für die gilt

  • Es ist für alle . ordnet also jeder natürlichen Zahl eine reelle Zahl zwischen null und eins zu.
  • ist normiert in dem Sinne, dass sich die Funktionswerte zu eins aufsummieren. Es gilt also
.

Dann heißt eine Wahrscheinlichkeitsfunktion und definiert durch

für alle

eine eindeutig bestimmte Wahrscheinlichkeitsverteilung auf den natürlichen Zahlen , versehen mit der Potenzmenge als Ereignissystem.

Aus Wahrscheinlichkeitsverteilungen abgeleitet

Gegeben sei eine Wahrscheinlichkeitsverteilung auf den natürlichen Zahlen , versehen mit , und sei eine Zufallsvariable mit Werten in . Dann heißt

definiert durch

die Wahrscheinlichkeitsfunktion von . Analog heißt

definiert durch

die Wahrscheinlichkeitsfunktion von

Beispiele

Eine typische Wahrscheinlichkeitsfunktion ist

für eine natürliche Zahl und eine reelle Zahl . Die Normiertheit folgt hier direkt aus dem binomischen Lehrsatz, denn es ist

.

Die so erzeugte Wahrscheinlichkeitsverteilung ist die Binomialverteilung.

Eine weitere klassische Wahrscheinlichkeitsfunktion ist

für

und ein . Hier folgt die Normiertheit aus der geometrischen Reihe, denn es ist

.

Die so erzeugte Wahrscheinlichkeitsverteilung ist die Geometrische Verteilung

Allgemeine Definition

Die Definition lässt sich von den natürlichen Zahlen auf beliebige höchstens abzählbare Mengen ausweiten. Ist solch eine Menge und ist

mit

,

so definiert durch

für alle

eine eindeutig bestimmte Wahrscheinlichkeitsverteilung auf .[3] Ist umgekehrt eine Wahrscheinlichkeitsverteilung auf und eine Zufallsvariable mit Werten in , so heißen

definiert durch

und

definiert durch

die Wahrscheinlichkeitsfunktion von beziehungsweise .[4]

Alternative Definition

Manche Autoren definieren zuerst reelle Folgen mit für alle und

und nennen diese Folgen Wahrscheinlichkeitsvektoren[5] oder stochastische Folgen[6] [7].

Eine Wahrscheinlichkeitsfunktion wird dann definiert als

gegeben durch

für alle

Umgekehrt definiert dann jede Wahrscheinlichkeitsverteilung oder Zufallsvariable auf auch eine stochastische Folge/Wahrscheinlichkeitsvektor über beziehungsweise

Andere Autoren nennen bereits die Folge eine Zähldichte.[8]

Weitere Beispiele

Typisches Beispiel für Wahrscheinlichkeitsfunktionen auf beliebigen Mengen ist die diskrete Gleichverteilung auf einer endlichen Menge . Sie besitzt dann per Definition die Wahrscheinlichkeitsfunktion

für alle .

Der Zugang über die stochastischen Folgen erlaubt die folgende Konstruktion von Wahrscheinlichkeitsfunktionen: Ist eine beliebige (höchstens abzählbare) Folge von positiven reellen Zahlen mit Indexmenge gegeben, für die

gilt, so definiert man

.

Dann ist eine stochastische Folge und definiert damit auch eine Wahrscheinlichkeitsfunktion. Betrachtet man zum Beispiel die Folge

für ,

so ist

.

Somit ist die Normierungskonstante und als Wahrscheinlichkeitsfunktion ergibt sich

.

Dies ist die Wahrscheinlichkeitsfunktion der Poisson-Verteilung.

Verteilungsfunktionen und Wahrscheinlichkeitsfunktionen

Verteilungsfunktion eines Wahrscheinlichkeitsmaßes, dass sich über eine Wahrscheinlichkeitsfunktion definieren lässt. Charakteristischerweise hat die Verteilungsfunktion an der Stelle einen Sprung um nach oben.

Ist eine Wahrscheinlichkeitsfunktion auf , so ist die Verteilungsfunktion des entsprechenden Wahrscheinlicheitsmaßes gegeben als

.

Dabei bezeichnet die Abrundungsfunktion, das heißt ist größte ganze Zahl, die kleiner oder gleich ist.

Ist auf einer höchstens abzählbaren Teilmenge der reellen Zahlen definiert, also auf , so ist die Verteilungsfunktion des Wahrscheinlichkeitsmaßes definiert durch

.

Beispiel hierfür ist .

Literatur

Einzelnachweise

  1. Georgii: Stochastik. 2009, S. 18.
  2. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 13.
  3. Schmidt: Maß- und Wahrscheinlichkeit. 2011, S. 196.
  4. Czado, Schmidt: Mathematische Statistik. 2011, S. 4.
  5. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 13.
  6. Meintrup, Schäffler: Stochastik. 2005, S. 63.
  7. Schmidt: Maß- und Wahrscheinlichkeit. 2011, S. 234.
  8. Georgii: Stochastik. 2009, S. 18.