Zum Inhalt springen

Poisson-Prozess

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 14. September 2013 um 19:18 Uhr durch 128.176.151.181 (Diskussion) (Änderung 122537370 von HilberTraum rückgängig gemacht;). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Pfade von zwei Poissonprozessen mit konstanter Intensität: einmal 2.4 (blau) und 0.6 (rot). Der blaue Prozess hat eine vier mal höhere Intensität und weist auch mit 30 Sprüngen im gezeichneten Zeitintervall [0,14.9] weit mehr auf als der rote (nur 8). Dies sind fast genau vier mal so viele Sprünge, was auch zu erwarten war.
Pfade von zwei kompensierten zusammengesetzten Poisson-Prozessen. Wie oben ist die Intensität (Sprunghäufigkeit) des blauen Prozesses mit 2.4 genau vier mal so hoch wie die des roten Prozesses. Im gezeichneten Intervall [0,35] springt der blaue Prozess 66 mal (erwartet wären 35*2.4=84), der rote 16 mal, also circa vier mal so oft. Bei beiden Prozessen sind die Sprünge normalverteilt mit Mittel 0.25. Diese Sprünge nach oben werden durch den negativen Drift genau so ausgeglichen (kompensiert), dass beide Prozesse Martingale sind. Da der blaue Prozess öfter nach oben springt, ist sein negativer Drift stärker.

Ein Poisson-Prozess ist ein nach Siméon Denis Poisson benannter stochastischer Prozess. Er ist ein Erneuerungsprozess, dessen Zuwächse poissonverteilt sind.

Die mit einem Poisson-Prozess beschriebenen seltenen Ereignisse besitzen aber typischerweise ein großes Risiko (als Produkt aus Kosten und Wahrscheinlichkeit). Daher werden damit oft im Versicherungswesen zum Beispiel Störfälle an komplexen Industrieanlagen, Flutkatastrophen, Flugzeugabstürze, usw. modelliert.

Parameter

Die Verteilung der Zuwächse hat einen Parameter λ, dieser wird als Intensität des Prozesses bezeichnet, da pro Zeiteinheit genau λ Sprünge erwartet werden (Erwartungswert der Poissonverteilung ist ebenfalls λ). Die Höhe jedes Sprunges ist eins, die Zeiten zwischen den Sprüngen sind exponentialverteilt. Der Poisson-Prozess ist also ein diskreter Prozess in stetiger (d.h. kontinuierlicher) Zeit.

Definition

Ein stochastischer Prozess mit càdlàg-Pfaden über einem Wahrscheinlichkeitsraum heißt (homogener) Poisson-Prozess mit Intensität und , falls folgende drei Bedingungen erfüllt sind:

  • (Siehe Fast sichere Eigenschaften).
  • . Dabei bezeichnet die Poisson-Verteilung mit Parameter .
  • Sei für eine Folge gegeben. Dann ist die Familie von Zufallsvariablen stochastisch unabhängig.

Für die Definition des inhomogenen Poisson-Prozesses siehe Poisson-Prozess#Inhomogener Poisson-Prozess.

Eigenschaften

  • Ein Poisson-Prozess ist offenbar ein stochastischer Prozess mit unabhängigen Zuwächsen.
  • Ein homogener Poisson-Prozess ist ein Markow-Prozess.
  • Der Zeitraum zwischen zwei Zuwächsen, also ist exponentialverteilt mit dem Parameter .
  • Ist ein Poisson-Prozess, so ist wieder ein Poisson-Prozess. So sind die Zuwächse homogener Poisson-Prozesse stationär.
  • Für den Erwartungswert und Varianz gilt .
  • Für die quadratische Variation gilt , da seine Pfade monton wachsend sind.
  • Da der Pfad des Prozesses monoton steigt, ist ein Submartingal bezüglich seiner natürlichen Filtrierung.
  • Falls man einen stochastischen Prozess hat, der die drei definierenden Eigenschaften erfüllt, so existiert eine Version des Prozesses mit càdlàg-Pfaden, also ein Poisson-Prozess.
  • heißt kompensierter Poissonprozess und ist ein Martingal bezüglich seiner natürlichen Filtrierung.
  • Ein Poisson-Prozess ist gedächtnislos (Es gilt also , d.h. die Restwartezeit auf den nächsten Sprung ist unabhängig von der bisherigen Wartezeit. (Dies ergibt sich aus der Exponentialverteilung).

Zusammengesetzte Poisson-Prozesse

Ist ein Poisson-Prozess mit Intensität sowie unabhängige, identisch verteilte Zufallsvariablen unabhängig von , so wird der stochastische Prozess

als zusammengesetzter Poisson-Prozess bezeichnet. Wie der ursprüngliche Poisson-Prozess ist auch X ein Sprungprozess unabhängiger Zuwächse und exponential(µ)-verteilter Abstände zwischen den Sprüngen, mit Sprunghöhen, die nach Y verteilt sind.

Für den Erwartungswert gilt die Formel von Wald (nach dem Mathematiker Abraham Wald),

.

Inhomogener Poisson-Prozess

In manchen Fällen kann es sinnvoll sein, nicht als Konstante, sondern als Funktion der Zeit aufzufassen. muss dabei die beiden Bedingungen

  • für alle und
  • für

erfüllen.

Für einen inhomogenen Poisson-Prozess gilt abweichend von einem homogenen Poisson-Prozess:

  • , wobei wieder die Poisson-Verteilung mit dem Parameter bezeichnet.
  • Für den Erwartungswert gilt .
  • Für die Varianz gilt ebenfalls .
  • Sind und zwei Sprungstellen des inhomogenen Poisson-Prozesses, dann ist exponentialverteilt mit dem Parameter 1.

Cox-Prozess

Ein inhomogener Poisson-Prozess mit stochastischer Intensitätsfunktion heißt doppelt stochastischer Poisson-Prozess oder nach dem englischen Mathematiker David Cox auch Cox-Prozess. Betrachtet man eine bestimmte Realisierung von , verhält sich ein Cox-Prozess wie ein inhomogener Poisson-Prozess. Für den Erwartungswert von gilt

.

Anwendungsbeispiele

  • Allgemein:
    • Zählung von gleichverteilten Ereignissen pro Flächen-, Raum- oder Zeitmaß (z.B. Anzahl der Regentropfen auf einer Straße; Anzahl der Sterne in einem Volumen V ist ein dreidimensionaler Poisson-Prozess).
    • Bestimmung der Häufigkeit seltener Ereignisse wie Versicherungsfälle, Zerfallsprozesse, Reparaturaufträge oder der Zahl der Tore in einem Fußballspiel (s. das Fußballbuch von Metin Tolan).
  • Bediensysteme:
    • die zufällige Anzahl von Telefonanrufen pro Zeiteinheit.
    • die zufällige Anzahl der Kunden an einem Schalter pro Zeiteinheit.
    • die Zeitpunkte, in denen Anforderungen (Personen, Jobs, Telefonanrufe, Heap,...) bei einem Bediener (Bank, Server, Telefonzentrale, Speicherverwaltung, ... ) eingehen.
  • Fehler, Ausfälle, Qualitätskontrolle:
    • die zufällige Anzahl von nichtkeimenden Samenkörnern aus einer Packung.
    • die Orte, an denen ein Faden Noppen hat.
    • Anzahl der Pixelfehler auf einem TFT-Display.
    • Anzahl der Schlaglöcher auf einer Landstraße.
    • Anzahl der Druckfehler in einem Buch.
    • Anzahl der Unfälle pro Zeiteinheit an einer Kreuzung.
    • Auf [1] (PDF; 35 kB) wird der Versuch unternommen, die Abfolge von Selbstmorden am Massachusetts Institute of Technology als Poisson-Prozess zu modellieren.
  • Physik:
    • die Zeitpunkte, in denen eine radioaktive Substanz ein -Teilchen emittiert.
    • zufällige Anzahl der -Teilchen, die von einer radioaktiven Substanz in einem bestimmten Zeitraum emittiert werden.
  • Versicherungsmathematik:
    • die Zeitpunkte von Großschäden einer Versicherung. In der Finanz- und Versicherungsmathematik wird das Auftreten von zu deckenden Schäden üblicherweise durch einen zusammengesetzten Poisson-Prozess beschrieben, bei dem die einzelnen, unabhängig voneinander auftretenden Schäden nach Y verteilt sind. Versieht man diesen Schadensprozess dann noch mit einem deterministischen, negativen Drift (Versicherungsbeiträge), so erhält man einen Vermögensprozess des Versicherungsunternehmens. Dem schließen sich Fragestellungen an wie: Wie wahrscheinlich ist es, dass der Vermögensprozess einen gewissen Schwellwert x, das heißt die Rücklagen der Versicherung, überschreitet und damit einen Konkurs erleidet? Wie stark muss der negative Drift beziehungsweise der Beitragssatz sein, um die Wahrscheinlichkeit eines Konkurses unter eine vorgegebene Schwelle zu drücken?
  • Finanzmathematik:
    • Modelle für Kurse von Aktien, wobei auch Sprünge erlaubt sind. Hierfür werden zwar oft Lévy-Prozesse verwendet, aber da unendliche Aktivität oft schwer zu messen ist, werden auch zusammengesetzte Poissonprozesse verwendet.
    • Kreditrisikomodelle helfen CDS -Spreads und andere Kreditderivate zu bewerten und modellieren.

Literatur