Bahnstörung
Eine Bahnstörung ist eine Abweichung der tatsächlichen Flugbahn eines Himmelskörpers von der nach einem Modell berechneten theoretischen Flugbahn. Was unter einer Bahnstörung zu verstehen ist, hängt demzufolge vom zugrundeliegenden Modell ab.
Das Modell der Flugbahn

Genauere Erkenntnisse über die mathematische Darstellung der Bahn (auch als Trajektorie bezeichnet) eines Himmelskörpers veröffentlichte Johannes Kepler im frühen 17. Jahrhundert in Form der später nach ihm benannten keplerschen Gesetze. Diese Gesetze konnten später von Isaac Newton mit Hilfe seines Gravitationsgesetzes theoretisch hergeleitet und damit begründet werden.
Damit traten elliptische Bahnen an die Stelle der bis dahin für real gehaltenen „kreisförmigen“ Planetenbahnen. Für Himmelskörper höherer Energien gibt es noch andere Keplerbahnen als Lösungen des Problems, wie sich ein Himmelskörper um einen anderen (der in der Regel deutlich massereicher ist) bewegt. Keplers Modell beschrieb die Bahnen deutlich besser als die Theorien zuvor. Aber auch sein Versuch, die Bahnen der Himmelskörper vorhersagbar zu machen, basierte auf bestimmten Vereinfachungen: Das eigentlich vorhandene Mehrkörperproblem wird auf ein Zweikörperproblem reduziert. Gravitations- oder andere Kräfte durch die Anwesenheit anderer Himmelskörper kommen also nicht vor. Die betrachteten Himmelskörper werden als Punktmassen mit Zentralfeld angesehen. Weitere Kraftwirkungen durch elektrische oder Magnetfelder, durch Materieströme, Strahlungsdruck, Luftwiderstand, u. ä. werden nicht betrachtet. Weit später entdeckte relativistische Effekte sind ebenfalls nicht berücksichtigt. Wenn die Bahn eines Himmelskörpers aufgrund der vernachlässigten Einflussgrößen vom modellierten Verhalten abweicht, spricht man von Bahnstörungen.
Arten von Bahnstörungen
Gravitative Kräfte
Es gibt verschiedene Arten von Störungen durch Gravitationseinflüsse. Ursache ist die inhomogene Masseverteilung der Erde oder der gravitative Einfluss von anderen Himmelskörpern.
Schwerefeldvariationen

Die Beschreibung der Erde als Punktmasse ist stark vereinfachend. In besserer Näherung kann die Erde als ein abgeplatteter Ellipsoid gesehen werden. Bis in eine Höhe von mehreren Erdradien werden selbst offene Bahnen (Vorbeiflüge) durch die Erdabplattung messbar gestört, bei künstlichen Erdsatelliten treten Perigäumsdrehungen auf. Niedrig fliegende Satelliten spüren sogar Schwereanomalien durch Meere, Gebirge und Unregelmäßigkeiten der Massenverteilung im Erdinnern. Dies nutzt die Satellitengeodäsie aus. Dabei werden selbst die Gezeiten berücksichtigt.
Auch die Abplattung der Sonne verursacht Periheldrehungen der Planetenbahnen, welche wegen der Geringfügigkeit der Abplattung und des großen Abstandes der Planeten jedoch wesentlich kleiner sind als die von den Planeten untereinander verursachten Periheldrehungen.
Einfluss anderer Himmelskörper
Wenn ein Himmelskörper einer Anziehungskraft ausgesetzt ist, welche streng umgekehrt quadratisch mit der Entfernung vom Zentralkörper abnimmt, so würde er sich exakt auf einer Keplerellipse bewegen, deren Form, Lage und Orientierung im Raum unverändert bliebe. Unter der Apsidendrehung versteht man eine fortschreitende Drehung der ganzen Bahn in der Bahnebene. Im Falle der Planetenbahnen ist der Einfluss der jeweils anderen Planeten die Hauptursache für die Periheldrehungen: Aus der Summe der gravitativen Einflüsse der anderen Planeten und der Auswirkung der allgemeinen Relativitätstheorie (siehe weiter unten) resultiert – in eine bezüglich des Fixsternhintergrunds ruhenden Koordinatensystem – eine rosettenartige Bewegung der Planeten: Die anomalistische Periode entspricht nicht genau der siderischen.
Der Einfluss der direkten Kraftwirkung durch andere Himmelskörper auf ein Objekt in der Erdumlaufbahn hängt von den Orbitparametern ab. Eine wesentliche Rolle spielen Mond und Sonne, aber auch die Venus und der Jupiter besitzen einen kleinen Einfluss. Dieser Einfluss ist im Bereich der geostationären Satelliten (GEO) größer als bei den Satelliten in den unteren Erdumlaufbahnen (LEO und MEO).
Mit steigender Beobachtungsgenauigkeit konnten Anfang des 19. Jahrhunderts Abweichungen der Umlaufbahn des Planeten Uranus von der Keplerbahn präzise bestimmt werden. Als Ursache wurde ein damals noch unbekannter achter Planet des Sonnensystems angesehen, dessen Position aufgrund der Uranus-Bahnstörungen vorhergesagt werden konnte. 1846 führte das schließlich zur Entdeckung des Neptun. In gleicher Weise wurde 1930 der Zwergplanet Pluto aufgrund der vom ihm verursachten Bahnstörungen entdeckt.
Auf lange Sicht bewirkt die Gezeitenreibung nicht nur eine Abbremsung der Erdrotation, sondern eine Vergrößerung der Mondbahn. Die mittlere Entfernung zwischen dem Mond und der Erde wächst jährlich um etwa 3,8 cm.
Nicht-gravitative Kräfte
Wechselwirkung mit der Atmosphäre

Bei künstlichen Satelliten in niedrigen Orbits ist die Erdatmosphäre nicht zu vernachlässigen. Bei der Wechselwirkung handelt sich nicht um eine Strömung; die Teilchen treffen einzeln auf. Da sie abprallen und auch Oberflächenatome herausschlagen, tritt je nach Neigung der getroffenen Fläche auch eine Kraft quer zur Flugrichtung auf. Die weit überwiegende parallele Kraftkomponente führt zu einem stetigen Verlust an Bahnenergie, der bei längeren Missionen ausgeglichen werden muss, um einen Absturz zu vermeiden, siehe das Diagramm zur Raumstation Mir in 300 bis 400 km Höhe. Das Hubble-Weltraumteleskop in etwa 600 km Höhe sank dagegen in 19 Jahren um nur rund 80 km.
Das Ausmaß des Effekts ist nur grob vorauszuberechnen, da die Ausdehnung der Hochatmosphäre stark von der Sonnenaktivität abhängt.
Strahlungsdruck und Wärmestrahlung
Auch der Strahlungsdruck kann zu Bahnstörungen führen. Wenn ein Körper elektromagnetische Strahlung (also auch Licht) absorbiert, emittiert oder reflektiert, dann wirkt sich der entsprechende Impulsübertrag auf seine Bahn aus. Bei Absorption und Emission ist der Strahlungsdruck gleich der Bestrahlungsstärke dividiert durch die Lichtgeschwindigkeit. Bei vollständiger Reflexion ist der Strahlungsdruck doppelt so groß.
Im erdnahen Raum wird dieser Druck direkt durch die Sonnenstrahlung oder indirekt durch das von der Erde (abhängig vom lokalen Rückstrahlvermögen) reflektierte Sonnenlicht erzeugt.
Beim Poynting-Robertson-Effekt wirkt sich der Strahlungsdruck der Sonne auf die Umlaufbahnen kleiner Teilchen der interplanetaren Materie so aus, dass sich diese immer mehr der Sonne annähern.
Beim Jarkowski-Effekt wirkt sich die unterschiedlich starke Erwärmung der sonnenzu- bzw. -abgewandten Seiten eines Asteroiden so aus, dass die verschieden große Wärmestrahlung in die verschiedenen Raumrichtungen eine Kraft auf den Himmelskörper bewirkt. Die Stärke des Effektes hängen dabei auch von der Rotation, der Oberflächenbeschaffenheit und der Wärmeleitfähigkeit des Asteroiden ab. Als Folge werden beispielsweise die Bahnen von Asteroiden, die sich in Richtung ihrer Flugbahn um die eigene Achse drehen (prograd), nach außen gedrückt und die jener, deren Eigendrehung entgegen der Flugbahn (retrograd) verläuft, nach innen verändert. Ein entsprechender Effekt hinsichtlich des Rotationszustandes eines Himmelskörpers ist der YORP-Effekt.
Die anisotrope Emission von Wärmestrahlung wird auch als Ursache der Pioneer-Anomalie, der Bahnabweichung der Anfang der 1970er Jahre gestarteten Sonden Pioneer 10 bzw. Pioneer 11, angenommen.
Elektromagnetische Wechselwirkung

Für elektrisch geladene oder magnetische Objekte spielt die elektromagnetische Wechselwirkung eine besondere Rolle. Auch außerhalb der Magnetosphäre von denjenigen Himmelskörpern, die selbst ein planetares Magnetfeld besitzen, existiert durch die Sonne ein interplanetares Magnetfeld, welches durch den Sonnenwind verstärkt wird. Aufgrund der Wechselwirkung zwischen den Magnetfeldern bzw. mit den dazu relativ bewegten elektrischen Ladungen der Objekte wirken weitere Kräfte, die eine Bahnstörung hervorrufen können.
Relativistische Effekte

In der allgemeinen Relativitätstheorie von Albert Einstein wird die Gravitation als Trägheitskraft gedeutet, sie ist demnach eine geometrische Eigenschaft der gekrümmten vierdimensionalen Raumzeit. Zur Bestimmung der an einem Punkt herrschenden Krümmung der Raumzeit dienen die einsteinschen Feldgleichungen. Sie wurden so formuliert, dass sie im Grenzfall schwacher Gravitation mit dem newtonschen Gravitationsgesetz übereinstimmen. Innerhalb des Sonnensystems, wo es sich um schwache Felder bzw. geringe Krümmung der Raumzeit handelt, ergeben sich nur geringe Abweichungen von den Vorhersagen des newtonschen Gravitationsgesetzes und damit von den Keplerbahnen. Bei starker Krümmung, wie sie durch starke Konzentration großer Masse auf kleinem Raum hervorgerufen wird, kommen neuartige Phänomene vor, wie sie sich beispielsweise bei Pulsaren im Orbit um andere Sterne zeigen: Der Hulse-Taylor-Doppelpulsar verändert seine Bahn auch dadurch, weil er Energie in Form von Gravitationswellen abstrahlt.
Die Zeitdilatation
Bei der Zeitdilatation handelt es sich nicht um eine Bahnstörung im eigentlichen Sinn, sie führt jedoch zu Auswirkungen auf die technische Anwendung von Satelliten, so dass dieser Effekt für die Analyse von Bahnstörungen wichtig ist. Die Zeitdilatation hängt von zwei Größen ab, zum einen vom Ort im Gravitationsfeld und zum anderen von der Geschwindigkeit des beobachteten Objektes.[1] Das Zeitsignal der GPS-Satelliten muss entsprechend korrigiert werden: In dieser Flughöhe (MEO) hat der gravitative relativistische Effekt (der allgemeinen Relativitätstheorie) eine größere Auswirkung als der geschwindigkeitsbezogene relativistische Effekt (der speziellen Relativitätstheorie), daher laufen die Uhren des Satelliten relativ zu Uhren auf der Erde schneller.
Die Raumkrümmung
Wegen der allgemeinen Relativitätstheorie weicht das Kraftgesetz für Himmelskörper grundsätzlich vom idealisierten invers-quadratischen Verhalten des newtonschen Gravitationsgesetzes ab (wenn auch nur in sehr geringem Ausmaß), so dass ein weiterer Beitrag zu den Periheldrehungen der Planeten entsteht.
Bekanntestes Beispiel für solche relativistischen Effekte ist die Periheldrehung des Merkur. In der Mitte des 19. Jahrhunderts benutzte Urbain Le Verrier Beobachtungen von Merkurdurchgängen für eine besonders genaue Vermessung der Merkurbahn und stellte anhand der verbesserten Daten fest, dass Merkurs Periheldrehung etwas stärker ausfiel als erwartet. Nach den Berechnungen auf Basis des newtonschen Gravitationsgesetzes sollte sie etwa 530 Bogensekunden (") pro Jahrhundert betragen, wobei circa 280" auf den Einfluss der Venus entfielen, circa 150" auf Störungen durch Jupiter und circa 100" auf die restlichen Planeten. Die beobachtete Periheldrehung (moderner Wert: 571,91" pro Jahrhundert) war jedoch deutlich größer, die Diskrepanz beträgt 43,11". Erst der relativistisch berechnete Anteil von 42,98" zur Periheldrehung stimmt recht gut mit dem beobachteten Überschuss überein.
Der Lense-Thirring-Effekt
Ein weiterer relativistischer Effekt ist der Lense-Thirring-Effekt. Anschaulich gesprochen bewirkt eine rotierende Masse durch eine Mitführung der Raumzeit eine Verdrillung der Raumzeit. Wenn ein Himmelskörper auf seiner Bahn rotiert, führt das also zu einer zusätzlichen Präzession. Die Satellitenmission Gravity Probe B bestätigte 2004/05 diesen Effekt. Eine andere Konsequenz des Effekts wäre, dass die Orbitalebene der Sterne, die nahe einem supermassiven Schwarzen Loch kreisen, zur Präzession um die Drehachse des Schwarzen Lochs gebracht würde. Dieser Effekt konnte noch nicht nachgewiesen werden, ein Nachweis wird jedoch in den nächsten Jahren erwartet. Durch einen Vergleich Präzession von zwei Sternen auf verschiedenen Orbits sollte es prinzipiell möglich sein, das „no-hair-theorem“ der allgemeinen Relativitätstheorie zu bestätigen.
Auswirkungen auf die Bahnelemente

Bahnstörungen können eingeteilt werden in:[2]
- Periodische Störungen – diese führen zu Schwankungen um einen Mittelwert, gleichen sich also im Mittel aus. Man unterscheidet wiederum in lang- und kurzperiodische Störungen.
- Säkulare Störungen - diese sind „fortschreitend“ (im Sinne von linear wachsend), können sich über längere Zeiträume somit zu großen Beiträgen aufaddieren.
Gänzlich unregelmäßig können Bahnstörungen in der Nähe irregulär geformter Himmelskörper oder in Materiewolken sein. Generell ändern sich die Zahlenwerte der jeweils sechs Bahnelemente (bzw. Satellitenbahnelemente) und können genähert mit dem Verfahren der Variation der Elemente berechnet werden. Dabei erhält (fast) jedes der Bahnelemente (a, e, i, Ω, ω, T) einen zeitabhängigen Term, die Bahnwinkel Ω, ω und der Zeitparameter T auch mehrere. Eine detaillierte Beschreibung der Berechnung findet sich in der Literatur.
Gravitative Kräfte
Das Geoid
Auf die Bahnebene der Umlaufbahn eines erdnahen Satelliten übt das unregelmäßige Gravitationsfeld der Erde ein „Kippmoment“ aus, dem die Bahnebene durch eine Präzessionsbewegung nach den Kreiselgesetzen ausweicht. Diese Ausweichbewegung führt dazu, dass der aufsteigende Knoten bzw. die Knotenlinie nicht feststeht, sondern langsam in der Äquatorebene rotiert und sich damit die Rektaszension des aufsteigenden Knotens ständig ändert. Die Bahnebene dreht sich quasi um die z-Achse des astronomischen Koordinatensystems (Abb.: Bahnelemente 01, Bahnelemente 02). Gleichzeitig dreht sich die Apsidenlinie in der Bahnebene – ebenfalls durch Schwerkrafteinflüsse – um den Erdmittelpunkt. Damit erfährt auch das Argument des Perigäums eine zeitliche Änderung. Diese zeitliche Änderung in Grad pro Tag (°/d) kann mit folgender Beziehung berechnet werden (siehe Satellitenbahnelement):
. (1) . (2)
mit als Erdradius.
Die Auswirkung dieser Bahnstörung kann auch positiv genutzt werden. Es kann durch entsprechende Auswahl der Inklination ein sonnensynchroner Orbit generiert oder das Perigäum über einen festen Erdpunkt gehalten werden. Dies kann wie folgt berechnet werden[3]:
Anmerkung: Eine weitere Auswirkung aufgrund der Inhomogenität der Erde ist die Ost-West-Drift. Diese wird aufgrund von Gravitationspotentialtälern und –bergen verursacht. Details sind der angegebenen Literatur zu entnehmen.
Auswirkungen anderer Himmelskörper
Wie zuvor schon erwähnt, können die Gravitationskräfte der anderen Planeten des Sonnensystems eine Periheldrehung eines Orbits verursachen (siehe Merkur). Für die Erdumlaufbahn gibt es jedoch zwei Himmelskörper, mit einem stärkeren Einfluss: Sonne und Mond.
Für geostationäre Satelliten sind diese Einflüsse von besonderer Bedeutung. In der nebenstehenden Abbildung sind die Kräfte aufgrund der Sonnen- und Mondgravitation eingezeichnet. Die Kraftvektoren können zerlegt werden in eine Komponente parallel und eine senkrecht zur Satellitenbahnebene (Seitenansicht). Die senkrechte Komponente ist eine säkulare und die parallele eine periodische Störung. Die säkulare Störung wirkt akkumulierend in eine Richtung und beeinflusst analog der Erdabplattung die Bahnelemente , und . Für GEO-Satelliten sind und gleich Null, aufgrund von , so dass diese Störung lediglich eine Auswirkung auf die Inklination hat. Wird bei einem geostationären Satelliten diese Störung nicht korrigiert (z. B. durch eine entsprechende Bahnregelung), so wie dies beim Artemis Satelliten der Fall ist, erfährt dieser eine Nord-Süd-Drift von:
Die periodische Komponente (Abb. Draufsicht) ändert im Laufe der Zeit seine Richtung und auch seinen Wert. Eine Akkumulation über einen entsprechenden Zeitraum hat eine annähernde Kompensation der Krafteinwirkung zur Folge. Aufgrund des geringen Störungswertes und des Wechsels der Richtung werden die Bahnelemente langfristig nicht beeinflusst. Es können sich lediglich lokale Abweichungen ergeben.
Nicht-gravitative Kräfte
Der Sonnendruck
Der Strahlungsdruck der Sonne wird durch die Impulsübertragung der Photonen auf absorbierende und emittierende Flächen hervorgerufen. Diese Krafteinwirkung bewirkt eine kontinuierliche Beschleunigung die von der Sonne weg führt und so eine Änderung der Exzentrizität des Orbits hervorruft. Die Störgröße ist abhängig von der Größe der bestrahlten Fläche (u. a. der Solarpanel) und von dessen Reflexionsfaktor. Die Impulsübertragung des Photons erfolgt zum einen bei der Absorption und wird ein zweites Mal bei der Emission übertragen, das bedeutet, dass das Photon bei einer Reflexion maximal zwei Impulse übertragen kann. Eine Exzentrizitätsänderung wird hervorgerufen (siehe Abb.), da das Objekt bei seiner Umkreisung des Zentralkörpers auf der einen Seite beschleunigt wird (Störgröße wirkt in Richtung des Flugvektors) und auf der anderen Seite gebremst wird (Störgröße wirkt entgegen der Richtung des Flugvektors). Da die Störgrößen in beiden Fällen gleich groß sind und sich demzufolge kompensieren, ändert sich die Energie des Orbits nicht, so dass die Umlaufzeit konstant bleibt. Der Sonnendruck p kann wie folgt berechnet werden:
wobei S die Leuchtkraft der Sonne (in Erdnähe 1372 W/m²) und c die Lichtgeschwindigkeit darstellt. Der Reflexionsfaktor r besitzt einen Wert zwischen 0 und 1.
Weiterhin kann die Auswirkung des Sonnenwindes auch bei Kometenschweife und Materiewolken beobachtet werden. Darüber hinaus hindert der Sonnenwind die Teilchenströme der interstellaren Materie daran in das Sonnensystem einzudringen und erzeugt so die Heliosphäre.
Restatmosphäre
Bis zu einer Höhe von ungefähr 500 km ist die Restatmosphäre eine der stärksten Störgrößen. Diese wirkt in Flugrichtung, wobei die Fläche senkrecht zur Flugrichtung von Bedeutung ist. Die Störgröße (oder auch Strömungswiderstand unter freier Molekularströmung - siehe Knudsen-Zahl) führt zu einem Energieverlust der Orbitbahn des Objektes (siehe Vis-Viva-Gleichung – kinetische und potentielle Energie), was zur Folge hat, dass sich das Objekt auf einer Spiralbahn der Erde nähert und dort in der Erdatmosphäre verglüht. Die Störgröße berechnet sich zu:
wobei:
- – ist der Widerstandsbeiwert für freie Molekularströmung und liegt zwischen 2,3 und 2,5[4]
- A – Fläche senkrecht zu Flugrichtung
- – Luftdichte in entsprechender Höhe
- v – Geschwindigkeit des Objektes
Um die Charakteristika von Objekte bei einem Wiedereintritt vergleichen zu können wurde der ballistische Faktor eingeführt. Dieser gibt Auskunft über die Masse, Fläche und den Widerstandsbeiwert und berechnet sich zu:
Die Störgröße kann auch zu Gunsten einer Raumfahrtmission als Aerobraking Manöver eingesetzt werden.
Berechnung von Bahnstörungen
Wegen der Vielzahl der oben aufgeführten Vereinfachungen – Einführung des Begriffes „Flugbahn“ usw. – ist klar, dass alle Versuche, das Sonnensystem in Formeln zu fassen, immer nur Teilaspekte modellieren können.
Dieser Abschnitt erläutert die Verfahren und Vereinfachungen, die zur Anwendung gelangen, allgemeinverständlich. Detailliertere Informationen zu den Rechenverfahren sind u.a. im Artikel Satellitenbahnelement enthalten.
Häufiger Fehler
Weil dieser Fehler den Medien regelmäßig unterläuft, hier ein kurzer Hinweis: Die Auswirkungen anderer Himmelskörper (Planeten) lassen sich nicht einfach durch den Vergleich der relativen Stärke ihrer Gravitations-(Kraft-)felder abschätzen. Die energetischen Auswirkungen der Störungen durch andere Planeten folgen vielmehr aus der Tatsache, dass sich die Erde auf ihrer Bahn um die Sonne im Gravitationspotential des jeweiligen Planeten um ca. 300 Millionen Kilometer auf und ab bewegt.
Analytische Näherungsverfahren
Ein einfaches Näherungsverfahren zur Berechnung der Periheldrehung der Bahn eines Planeten vereinfacht die (von diesem Planeten aus betrachtet) inneren Planeten zu Massenpunkten im Zentrum der Sonne, und die äußeren Planeten zu Masseringen mit der Gesamtmasse des betreffenden äußeren Planeten. Die Analyse liefert die Bahn des untersuchten Planeten wieder als Keplerbahn, deren Perihel sich aber langsam um die Sonne dreht. Dies ist die sogenannte Periheldrehung. (Genauer gesagt, ist dies die Periheldrehung der Newtonschen Gravitationstheorie, die Allgemeine Relativitätstheorie liefert eine etwas abweichende Periheldrehung.)
Die Anwendung solcher und ähnlicher analytischer Verfahren wird als Störungsrechnung bezeichnet.
Numerische Verfahren
Die Finite-Elemente-Methode und Numerische Integration bieten prinzipiell die Möglichkeit, ein Raumvolumen wie das Sonnensystem oder ein Planet-Satelliten-System in kleine Raumeinheiten (z. B. Würfel) mit bestimmten Eigenschaften zu unterteilen und die Wechselwirkung dieser Raumeinheiten untereinander in diskreten zeitlichen Schritten zu berechnen. Diese Methode stößt wegen der dafür benötigten Rechenzeit an Grenzen.
In einem weiteren Vereinfachungsschritt wird den Planeten ein Massenschwerpunkt zugewiesen, bzw. einem Planeten mit Monden ein Systemschwerpunkt. Dann wird in kleinen zeitlichen Schritten jeweils berechnet, wie sich diese Punkte unter dem Einfluss der Gravitation bewegen würden (numerische Integration). Dies ähnelt der Finite-Elemente-Methode auf einem groben Raster.
Ephemeriden
Die Bahnen der Systemschwerpunkte und der darin enthaltenen Massenpunkte der Himmelskörper im Sonnensystem werden periodisch in den Ephemeriden (Planetentafeln) von renommierten Observatorien veröffentlicht. Zusätzlich wird dabei berücksichtigt, dass ein Beobachter sich auf der Oberfläche der Erde befindet und nicht in ihrem Massenschwerpunkt sitzt, und dass die Atmosphäre und die relative Geschwindigkeit der Körper untereinander optische Effekte verursachen.
Die Ephemeriden können in ganz verschiedenen Koordinatensystemen relevant sein (bzw. werden in solchen Tabellen veröffentlicht), zum Beispiel als Koordinaten der Himmelskörper (bzw. der Schwerpunkte von Planet-Mond-Systemen) in einem Bezugssystem, dessen Mittelpunkt ein nichtrotierendes Koordinatensystem im Schwerpunkt des Sonnensystems ist. Nichtrotierend ist relativ zu den fernen Sternen definiert. Streng genommen ist dies nicht identisch mit dem heliozentrischen System, da sich der Schwerpunkt der Sonne nicht genau im Schwerpunkt des Sonnensystems befindet. Aus diesen Koordinaten kann dann errechnet werden, wie sich ein Himmelskörper einem Astronomen an einem bestimmten Ort zu einer bestimmten Zeit zeigen würde.
Siehe auch
- Kozai-Effekt: Periodische Bahnstörung, verursacht durch die Gravitationswirkung weiterer Himmelskörper, welche beispielsweise die Entstehung irregulärer Satelliten der Planeten, die hohe Anzahl an heißen Jupitern unter den Exoplaneten oder die Entstehung von Blauen Nachzüglern erklärt
- Fly-by-Anomalie: Seit 1990 mehrfach aufgetretene kleine zusätzliche Geschwindigkeitszunahme, die Raumsonden bei einem Fly-by an der Erde erfahren haben
Literatur
- Ernst Messerschmid, Stefanos Fasoulas: Raumfahrtsysteme. Eine Einführung mit Übungen und Lösungen. 3. neu bearbeitete Auflage. Springer, Berlin u. a. 2009, ISBN 978-3-540-77699-4.
- Ulrich Walter: Astronautics. Wiley-VCH-Verlag, Weinheim 2008, ISBN 978-3-527-40685-2 (Physics Textbook).
- Wiley J. Larson, James R. Wertz (Hrsg.): Space Mission Analysis and Design. 3. edition, 8. printing. Microcosm Press u. a., El Segundo CA u. a. 2006, ISBN 0-7923-5901-1 (Space Technology Library).
- Udo Renner, Joachim Nauck, Nikolaos Balteas: Satellitentechnik. Eine Einführung. Springer, Berlin u. a. 1988, ISBN 3-540-18030-3.
Weblinks
- Ahmed, Kamran (2005): "Obrital Perturbation" (pdf), Präsentation
- Baur, Oliver (2002): "Ozeangezeitenlösung aus Bahnstörungen erdnaher Satelliten" (pdf), Geodätisches Institut der Universität Stuttgart und GeoForschungsZentrum Potsdam, Diplomarbeit
- Daubrawa, Julian (2007): "Bahnstörungen durch Ozeangezeiten" (pdf), Geodätisches Institut Stuttgart, IfEN GmbH, Diplomarbeit
- Eshagh, M; Najafi Alamdari, M. (2007): "Perturbations in orbital elements of a low earth orbiting satellite" (pdf), Journal of the Earth & Space Physics. Vol. 33, No. 1, P. 1-12, Artikel
- Montag, Horst (2005): "Zu relativistischen Effekten in der Satelliten- bzw. Raumgeodäsie" (pdf), Sitzungsbericht der Leibniz-Sozietät 78/79 2005, S. 277–290, Bericht
- Pressezentrum: "Die Erde als Kartoffel - Das Potsdamer Geoid" (pdf), Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum – GFZ, Telegrafenberg, 14473 Potsdam, Presseinformation
- Meisinger, R.; Karaca, T.; Taufer, M. (2002): "Simulation der Wiedereintrittsbahn der ISS – Rettungskapsel" (pdf), ISSN 1616-0762 Sonderdruck Schriftenreihe der Georg-Simon-Ohm-Fachhochschule Nürnberg Nr. 12
Einzelnachweise
- ↑ Alfred Mischke: Vorlesung zur Veranstaltung Vermessungskunde im WS 2011/12, aufgerufen am 4. August 2012
- ↑ Günter Seeber: Satellitengeodäsie: Grundlagen, Methoden und Anwendungen. Walter de Gruyter, 1989, ISBN 978-3-11-010082-2, S. 96 (google.com [abgerufen am 3. Dezember 2012]).
- ↑ Sneeuw, Nico (2006): Lectures Notes, S. 30/31, Institute of Geodesy, Universität Stuttgart (englisch)
- ↑ Gräßlin, Michael (2004): Widereintritts-Satellit – Ein Satellit kommt zurück, Vorlesung, Universität Stuttgart