Zum Inhalt springen

Diskussion:Wolfgang Mückenheim

Seiteninhalte werden in anderen Sprachen nicht unterstützt.
aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 19. Oktober 2012 um 22:54 Uhr durch H-Hippasos (Diskussion | Beiträge) (Neufassung). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 12 Jahren von H-Hippasos in Abschnitt Neufassung

In einer Neuauflage des Buches wurden seine diesbezüglichen Thesen allerdings vom Verlag aus dem Buch gestrichen. Anmerkung: Diese Aussage ist falsch. Der Oldenbourg-Verlag hat niemals in meine Texte eingegriffen. Meine "Thesen" stehen nach wie vor im Vorwort des Buches (S. VI - VIII). --WM

Wie jeder Leser meiner Bücher leicht nachprüfen kann, lehne ich weder die Existenz von Kreisen und Geraden ab, noch die Mathematik der letzten 2500 Jahre einschließlich irrationaler Zahlen. Ich lehne lediglich die beendete oder vollendete Unendlichkeit ab, die Cantor aus der Existenz Gottes abgeleitet zu haben glaubte und die später als sogenanntes Axiom übernommen wurde. Weiterhin treffen die übrigen, in der "Rezension" des Herrn Dr. Lemmermeyer gemachten Vorwürfe nicht zu. Um nur ein Beispiel zu nennen: Der Rezensent wirft mir vor, die reellen Zahlen auf Seite 20 zu verwenden, ohne sie eingeführt zu haben. Hingegen erfolgte die Einführung bereits auf Seite 8 meines Buches - übrigens unverändert in allen drei Auflagen. Es handelt sich eindeutig um den Straftatbestand der üblen Nachrede, die leider mit Hilfe eines in der Redaktion des Zentralblattes beschäftigeten Komplizen ungeprüft ihren Weg in die Öffentlichkeit fand. Die Vorwürfe sind aber so absurd, dass ich es nicht für nötig erachte, ihnen auf juristischem Wege entgegenzutreten. --WM


Erläuterung des aus dem Zusammenhang gerissenen Zitats: Zahlen, die nicht kommuniziert werden können, haben in der Mathematik als Einzelobjekte keinen Platz, weil Mathematik im Wesentlichen Kommunikation von Individuen (mit anderen oder mit sich selbst) ist. Aufgrund physikalischer Beschränkungen können unendliche Ziffernfolgen nicht kommuniziert werden. Ein einfaches Beseipiel bietet der handlesübliche Taschenrechner, der keine Kommunikation von Folgen mit mehr als 10 Symbolen erlaubt. Ein anderes Beispiel bietet das ausnutzbare Universum, das mit seinen 10^80 Atomen keine Kommunikation von Folgen mit mehr 10^80 Symbolen erlaubt. Die Existenz einer übergeordneten Einheit, die einen erweitereten mathematischen Diskurs ermöglichen würde, halte ich für bisher unbewiesen. WM (nicht signierter Beitrag von 84.155.174.89 (Diskussion) 22:34, 12. Okt. 2012 (CEST)) Beantworten

Ich denke, dieser Zusammenhang wird auch aus dem Zitat selbst bereits deutlich, insofern braucht es dazu im Artikel keine weitere Erläuterung.--Suhagja (Diskussion) 11:01, 13. Okt. 2012 (CEST)Beantworten
Sie denken ja auch, die Zahl pi sei nicht kommunizierbar. --WM
Die These, Zahlen würden nicht existieren, wenn sie sich nicht kommunizieren lassen, ist offensichtlich absurd.--Suhagja (Diskussion) 11:01, 13. Okt. 2012 (CEST)Beantworten
Die These, eine Zahl, die nicht als individuum benannt oder verwendet werden kann, sei eine Zahl, ist absurd. --WM
Aber dazu kann sich jeder Leser des Zitats seine eigene Meinung bilden. --Suhagja (Diskussion) 07:21, 13. Okt. 2012 (CEST)Beantworten
Offensichtlich misslingt das vielen ohne die erklärende Hilfestellung. Aber das wird vermutlich von Ihnen beabsichtigt. --WM
Nebenbei verstehe ich nicht, wie sich das jetzt mit ihrer in den Artikel eingefügten Behauptung verträgt, sie würden die irrationalen Zahlen NICHT ablehnen. Die Zahl pi ist im oben genannten Sinne zweifellos nicht kommunizierbar, es ist nicht nur praktisch, sondern sogar theoretisch unmöglich, alle ihre Stellen aufzuzählen. --Suhagja (Diskussion) 07:21, 13. Okt. 2012 (CEST)Beantworten

Ich habe obige Diskussion jetzt nachträgliche formatiert und die auseinandergerissenen Teile nachträglich mit Signaturen versehen. Ich möchte darum bitten, in Zukunft nicht in den Kommentaren anderer Nutzer zu editieren. --Suhagja (Diskussion) 11:03, 13. Okt. 2012 (CEST)Beantworten

Die Theorie ist leider recht kompliziert und wird deswegen von vielen noch nicht verstanden. Die Zahl pi existiert, weil sie kommunizierbar ist, so dass im Prinzip jeder Empfänger der Information "pi" deren Trichotomieeigenschaften in Bezug auf jede reelle Zahl angeben kann. Das ist ebenso für alle anderen irrationalen Zahlen der Fall. Deswegen besteht kein Grund für mich, irrationale Zahlen "abzulehnen". Was nicht existiert, ist eine Folge von Ziffern im Dezimalsystem oder irgendeinem anderen Zahlensystem mit natürlicher Basis, aus der ein Empfänger die Zahl pi und ihre Trichotomieeigenschaften erkennen könnte. --WM

Nun, das ist a genau das, was sie auch in dem im Artikel wiedergegebenen (angeblich aus dem Zusammenhang gerissenen) Zitat zum Ausdruck zum bringen. Also sind Sie dort doch korrekt wiedergegeben :-) --Suhagja (Diskussion) 11:05, 13. Okt. 2012 (CEST)Beantworten

Offensichtlich haben Sie den Text aber nicht begriffen, weil Sie mir vor der Klarstellung vorwarfen bzw. kolportierten, ich würde irrationale Zahlen ablehnen. --WM (nicht signierter Beitrag von 84.155.164.169 (Diskussion) 12:20, 13. Okt. 2012 (CEST)) Beantworten

Ohne unendliche Mengen gibt es auch keine irrationalen Zahlen.--Suhagja (Diskussion) 12:56, 13. Okt. 2012 (CEST)Beantworten
Das ist falsch. Richtig ist: Ohne aktual unendliche Mengen gibt es keine vollständigen Dezimaldarstellungen irrationaler Zahlen. Und das ist offensichtlich der Fall. Irrationale Zahlen gibt es trotzdem. Allerdings nicht überabzählbar viele. --WM (nicht signierter Beitrag von 84.155.164.169 (Diskussion) 23:26, 13. Okt. 2012 (CEST)) Beantworten

Bitte

Grundsätzlich: schreiben Sie Ihre Kommentare bitte hier auf die Diskussionsseite. Versuchen Sie bitte nicht, immer wieder den Artikel zu revertieren.--Suhagja (Diskussion) 11:07, 13. Okt. 2012 (CEST)Beantworten

Es handelt sich nicht um Kommentare, sondern um Richtigstellungen. Ich werde offensichtliche Unwahrheiten bzw. Beleidigungen nicht tolerieren. Auch wenn Sie das gern sähen. Zum Beispiel ist Ihre Aussage: "In einer Neuauflage des Buches kommen seine diesbezüglichen Thesen allerdings nur noch im Vorwort vor." bewusst herabsetzend. Denn meine von Ihnen so genannten "Thesen" kamen in allen Auflagen an genau derselben Stelle, nämlich ausschließlich im Vorwort vor. Diese und Ihre vorhergehende Aussage: "In einer Neuauflage des Buches wurden seine diesbezüglichen Thesen allerdings vom Verlag aus dem Buch gestrichen." belegen deutlich Ihren Wunsch, beleidigende Inhalte anzubringen. --WM


Ihre Behauptung: "Er bestreitet die Existenz unendlicher Mengen und lehnt die darauf aufbauenden Entwicklungen der Mathematik in den letzten 2500 Jahren ab - die Existenz von Geraden, Kreisen, oder der Primfaktorzerlegung einiger natürlicher Zahlen wird ebenso bestritten wie die von irrationalen Zahlen." Ist der reinste Unsinn. Ich bestreite die Existenz aktuak unendlicher Mengen. Die Mathematik der letzten 2500 Jahre hat sich 2400 Jahre lang ohne aktual unendliche Mengen entwickelt. --WM (nicht signierter Beitrag von 84.155.164.169 (Diskussion) 12:20, 13. Okt. 2012 (CEST)) Beantworten

Das ist nicht meine Behauptung, sondern ein Zitat aus der Buchbesprechung im Zentralblatt. Wenn es andere Rezensionen in seriösen Fachzeitschriften gibt, können wir die gerne einbauen.--Suhagja (Diskussion) 19:20, 13. Okt. 2012 (CEST)Beantworten

Belegsituation

Die Belegsituation ist derzeit für die Ergänzungen zur Ursprungsversion nicht besonders gut, außerdem wurden einige Artikelteile gelöscht, was ich nicht so ganz nachvollziehen kann, namentlich der Satz „Unter seinen Publikationen fand die Erweiterung des Wahrscheinlichkeitsbegriffs für eine formale Lösung der Nichtlokalitätsprobleme der relativistischen Quantenmechanik besondere Beachtung.“ – ist das falsch? Die Behauptung in anderem Zusammenhang, er lehne „[…] die darauf aufbauenden Entwicklungen der Mathematik in den letzten 2500 Jahren ab“, kann sicherlich nicht ohne einen sehr guten Beleg dort stehen, denn das wäre ja schon eine sehr bemerkenswerte Position. Auch „In einer Neuauflage des Buches kommen seine diesbezüglichen Thesen allerdings nur noch im Vorwort vor“ bedürfte ein-es Beleges. Wer hat das so analysiert? Was ist „eine Neuauflage“? Im Kritik-Teil fehlt am Ende („Er erklärt allerdings nicht überzeugend, wie sich die Mathematik der letzten 2500 Jahre einschließlich irrationaler Zahlen ohne die Existenz unendlicher Mengen begründe ließe.“) auch nch ein Beleg oder ist das die Position des Artikelautors? Das wäre schlecht. —Pill (Kontakt) 12:40, 13. Okt. 2012 (CEST)Beantworten

noch einmal: gewünschte Änderungen bitte erst HIER diskutieren bevor im Artikel herumrevertiert wird. --Suhagja (Diskussion) 13:01, 13. Okt. 2012 (CEST)Beantworten

zur "besonderen Beachtung" für die Erweiterung des Wahrscheinlichkeitsbegriffs: hier ist wohl derjenige in der Belegpflicht, der die besondere Beachtung behauptet. Ein solcher Beleg wäre zum Beispiel eine Erwähnung in Fachbüchern, vorzugsweise in solchen,die nicht vom Autor verfaßt worden sind. --Suhagja (Diskussion) 13:04, 13. Okt. 2012 (CEST)Beantworten
Diese Behauptung ist inzwischen wieder eingefügt worden, ohne Beleg, ohne Link zu der Arbeit, sogar ohne Angabe des Titels der Arbeit. Das kann so nicht stehenbleiben, wenn noch nicht einmal gesagt wird, worin diese Erweiterung des Wahrscheinlichkeitsbegriffs eigentlich besteht. Ich habe vor einigen Jahren eine Vorlesung über Quantenphysik gehört, dabei ist mir die vielbeachtete Mückenheimsche Erweiterung jedenfalls nicht begegnet. Es müßte also präzise und mit Belegen herausgestellt werden, worin die Erweiterung besteht und wo sie verwendet wurde. Und vor allem müßte die Referenz zur Arbeit selbst angegeben werden. --Suhagja (Diskussion) 15:24, 14. Okt. 2012 (CEST)Beantworten
An dieser Stelle genügt Ihnen die Referenz eines seriösen Verlages nicht? Oder halten Sie den Oldenbourg-Verlag, der dies schrieb, nicht für seriös?

Nun denn, meine öfters zitierte Abhandlung "A Review of Extended Probabilities" kann hier online gelesen werden: http://bayes.wustl.edu/etj/articles/review.extended.prob.pdf Die Zitationen finden Sie wohl selbst im Internet. Obwohl es eine rein theoretische Arbeit war, wurde sie vom legendären John Maddox persönlich in Nature ganzseitig besprochen: http://www.hs-augsburg.de/~mueckenh/Nature.jpg Die Wertung dieser Fakten ist selbstverständlich subjektiv, und wir sind sicher auch hier verschiedene Meinung. --WM (nicht signierter Beitrag von H-Hippasos (Diskussion | Beiträge) 21:39, 14. Okt. 2012 (CEST)) Beantworten


die Bemerkung zur Neuauflage wird belegt durch den Forschungsbericht der FH Augsburg, unter "Weblinks" im Artikel. Dort schreibt Mückenheim selbst: "In der 1. Auflage seines im renom- mierten Münchner Oldenbourg- Verlag 2009 erschienenen Lehrbuchs für höhere Mathematik, „Mathematik für die ersten Semester“, machte er sich grundsätzliche Gedanken zum Mathematikverständnis. Da diese ab der 2. Auflage (2010) nur noch verkürzt zu lesen sind, sollen sie hier erneut vollständig abgedruckt werden und zum Diskurs anregen." (Seite 44, Linke Spalte, im Forschungsbericht) --Suhagja (Diskussion) 13:14, 13. Okt. 2012 (CEST)Beantworten
und daß die Thesen in der jetzigen Auflage noch im Vorwort vorkommen, hatte Mückenheim selbst hier eingefügt, das stand ursprünglich nicht im Abschnitt. --Suhagja (Diskussion) 13:24, 13. Okt. 2012 (CEST)Beantworten
wer die Existenz der unendlichen Mengen (oder wie es Mückenheim nennt: der Aktual unendlichen Mengen) ablehnt, der lehnt damit auch den Großteil der Mathematik der letzten 2500 Jahre ab, Kreise, Geraden, irrationale Zahlen, eigentlich fast alles. Das, nur um hier dem Vorwurf der Theoriefindung entgegenzuwirken, habe ich mir nicht selbst ausgedacht, sondern es steht so fast wörtlich in den Zentralblatt-Rezensionen, der einzigen verfügbaren Rezeption von Mückenheims Werk. --Suhagja (Diskussion) 13:10, 13. Okt. 2012 (CEST)Beantworten
Hallo Suhagja, zum Wahrscheinlichkeitsbegriff: Möglich, ja. Zur Neuauflage: Das ist aber kein Beleg für die Aussage, die Thesen kämen in der Neuauflage nicht mehr vor. Er hat gesagt, dass sie immer im Vorwort vorkämen. Das wird sich ja wohl prüfen lassen. Das kann so aber nicht unbelegt und vage („einer Neuauflage“) nicht im Artikel stehen. Deine Ansicht zum „Großteil der Mathematik der letzten 2500 Jahre“ ist eine Zuspitzung und nicht für die enzyklopädische Darstellung geeignet. Darüber soll sich der Leser selbst ein Bild machen; wir stellen als Enzyklopädie ganz konkret dar, wogegen sich Herr Mückenheim verwehrt und dabei sollte man es belassen. Wenn ein Rezensent hineininterpretiert, dass er damit einen „Großteil der Mathematik der letzten 2500 Jahre“ auch ablehne, dann kann das schon relevant sein – allerdings für den Abschnitt „Kritik“, nicht für die sachliche Darstellung von Mückenheims Position. —Pill (Kontakt) 13:30, 13. Okt. 2012 (CEST)Beantworten
Die Formulierung mit den 2500 Jahren stammt aus der Zentralblatt-Besprechung. Im Kritik-Abschnitt waren ursprünglich nur die Zentralblatt-Besprechungen zitiert worden. Nachdem WM einen längeren Kommentar mit seiner Sicht dazuschrieb, hatte ich WM's Kommentar gestrafft und der Neutralität halber noch einen Satz mit der Gegenmeinung hinzugefügt, i.W. Nochmal eine Wiedergabe der Zentralblatt-Aussage und eigentlich ja nun das, was jeder Mathematiker sagt, wenn die Existenz unendlicher Mengen bestritten wird - nämlich dass große Teile der Mathematik, eigentlich fast alles, sich ohne die Annahme unendlicher Mengen nun einmal nicht erklären lassen. Ich habe den Satz jetzt erstmal wieder entfernt, man müßte ihn entweder durch einen anderen ersetzen oder der Ausgeglichenheit halber auch WM's Satz herausnehmen, für den es ja eigentlich auch keine offizielle Quelle gibt. --Suhagja (Diskussion) 13:42, 13. Okt. 2012 (CEST)Beantworten
Einfach so stehenlassen kann man WM's Erklärung jedenfalls nicht, denn natürlich ist es nicht wahr, dass Existenz von unendlicher Mengen von Cantor als Axiom postuliert wurde. Bekanntlich hat schon Euklid bewiesen, dass es unendlich viele Primzahlen gibt. --Suhagja (Diskussion) 13:45, 13. Okt. 2012 (CEST)Beantworten
Nun, im Kritik-Abschnitt ist die Kritik ja zu lesen. Ich habe das nun dorthin verschoben, vgl. WP:NPOV. Die Aussage „In einer Neuauflage des Buches kommen seine diesbezüglichen Thesen allerdings nur noch im Vorwort vor.“ war offensichtlich unbelegt und bestritten, daher ebenfalls entfernt. Das Zitat erscheint mir reichlich selektiv, was soll das aussagen? Mir erscheint das für den Leser nicht wirklich relevant zu sein. Die gelöschten Kategorien habe ich wieder eingefügt – wo soll hier ein Problem bestehen? Grüße, —Pill (Kontakt) 15:06, 13. Okt. 2012 (CEST)Beantworten
Die Kategorien Mathematiker(20.jh.) und Mathematiker (21.jh.) passten nicht, weil er kein Mathematiker ist- weder hat er eine Ausbildung als Mathematiker noch irgendwelche Abschlüsse noch hat er jemals als Mathematiker gearbeitet. Die Kategorie Physiker(21.jh.) passt ebenfalls nicht, weil er nur im 20. Jahrhundert als Physiker gearbeitet hat. Das Zitat stand dort, weil es eben exemplarisch für seine Thesen ist. Vermutlich ist nicht jedem Laien sofort klar, was gemeint ist, wenn jemand die Existenz unendlicher Mengen bestreitet. anhand des Zitates kann auch der Laie verstehen, worum es WM geht. Ich hoffe mal, ich darf das Zitat (das ja relativ aktuell ist) jetzt wieder einfügen ohne dass es gleich revertieren wird).--Suhagja (Diskussion) 15:15, 13. Okt. 2012 (CEST)Beantworten
Nein, das Zitat passt hier einfach nicht; die Auswahl ist vollkommen selektiv. Bei den Kategorien … er ist Professor und seine Lehrgebiete sind „Mathematik [und] Physik“ (ausweislich der Uni-Seite). Wieso hat er dann nicht „als Mathematiker gearbeitet“? Grüße, —Pill (Kontakt) 15:21, 13. Okt. 2012 (CEST)Beantworten
Selbstverständlich arbeite ich seit 20 Jahren als Mathematiker, indem ich Vorlesungen über Mathematik halte. (nicht signierter Beitrag von 84.155.164.169 (Diskussion) 19:06, 13. Okt. 2012 (CEST)) Beantworten
Das ist hier aber nicht ausreichend, siehe Kategorie:Mathematiker: „Ein Mathematiker im für die Wikipedia relevanten Sinne ist eine Person, die einen wesentlichen Beitrag im Bereich der Mathematik geleistet hat.“ Irgendein neues Ergebnis haben Sie in der Mathematik nicht erzielt, oder doch? --84.130.251.137 23:53, 13. Okt. 2012 (CEST)Beantworten
Warten Sie ein paar Tage, bis der Forschungsbericht 2012 der HS Augsburg erscheint. Dann können Sie dort ein neues Ergebnis lesen.

Aber abgesehen davon, halte ich es für sehr wichtig, den Mathematikern bewusst zu machen, wie wichtig es ist, die von der Realität gesetzten Grenzen zu erkennen. Da gibt es einen Wohlordnungssatz von Zermelo, der behauptet, jede Menge kann wohlgeordnet werden und dabei besonders überabzählbare Mengen anspricht. Es gibt aber keine Möglichkeit, mehr als abzählbar viele Zahlen zu identifizieren (selbst ohne physikalische Beschränkungen übrigens). Die Mathematik beweist also, dass nicht identifizierbare Objekte geordnet werden können. Genau so gut könnte man beweisen, dass es sich auf dem Mond ohne Raumanzug ganz gut leben lässt. Die Mathematik hat sich in den letzten 100 Jahren zu einer Wissenschaft entwickelt, in der das Wort Beweis völlig entwertet wurde. Man kann beweisen, dass man jede Menge wohlordnen kann. Man kann aber nicht jede Menge wohlordnen. Diese Absurditäten den Anfängern klarzumachen, ehe sie nach der Investition vieler Studienjahre nicht mehr zurück können, ist mein wichtigster Beitrag.

Publikationen dazu liegen übrigens in gedruckter Form vor, z. B. hier: W. Mückenheim: "Physical Constraints of Numbers", Proceedings of the First International Symposium of Mathematics and its Connections to the Arts and Sciences, A. Beckmann, C. Michelsen, B. Sriraman (eds.), Franzbecker, Berlin 2005, p. 134 - 141. W. Mückenheim: "The infinite in sciences and arts", Proceedings of the 2nd International Symposium of Mathematics and its Connections to the Arts and Sciences (MACAS 2), B. Sriraman, C. Michelsen, A. Beckmann, V. Freiman (eds.), Centre for Science and Mathematics Education, University of Southern Denmark, Odense 2008, p. 265 - 272.

Aber Sie glauben doch nicht, dass mir in einer Zeitschrift des Vatikans über den Humbug der leibliche Himmelfahrt Mariä oder in einer mathematischen Zeitschrift über den Humbug der vollendet unendlichen Mengen zu referieren gestattet würde!

--WM (nicht signierter Beitrag von 84.155.182.160 (Diskussion) 21:10, 14. Okt. 2012 (CEST)) Beantworten

wenn es unbedingt sein muss, können wir auch mehr Zitate einfügen, aber ich sehe dafür eigentlich keine Notwendigkeit: dieses Zitat bringt doch genau auf den Punkt, worum es in der von WM angestoßenen Diskussion geht: das Dinge, die sich nicht kommunizieren (im Sinne von nicht aufschreiben oder aufzählen lassen) nach Meinung von WM eben nicht existieren. Das hat er übrigens auch hier in der Diskussion so gesagt, nur dass ich eben lieber ein offizielles Zitat aus einer offiziellen Quelle verwenden wollte. Wenn Du ein anderes ( kürzeres, prägnanteres) Zitat aus einer anderen Quelle hast, gerne her damit. Aber jedenfalls sollte schon ein Zitat im Artikel sein, aus dem auch für den Laien ersichtlich wird, worum es geht. Ich glaube nämlich nicht, dass jeder mit dem Begriff "transmittier Mengenlehre" etwas anfangen kann und ich bin mir auch nicht sicher, ob jeder Nicht-Mathematiker die Kritik aus der Lemmermeyer-Rezension sofort einordnen kann.--Suhagja (Diskussion) 15:30, 13. Okt. 2012 (CEST)Beantworten

1) Das ist Humbug. Weder hat Cantor ein Axiom zu unendlichen Mengen postuliert (das stammt von Zermelo 1904) noch hat Euklid aktual unendliche Mengen postuliert! Euklid hat bewiesen dass es zu jeder vorgegeben Menge Primzahlen eine weiter gibt. Das ist potentielll unendlich und deutlich von aktual unendich unterschieden.

2) Die Zentralblattrezension ist subjektiv und irrelevant. Sie enthält viele Fehler, stammt von einem Verleumder und wurde über dessen Komplizen ungeprüft im Zentralblatt untergebracht. Wäre das Buch so schlecht, wie dort behauptet, hätte es kaum Bestseller werden können. Daher ist ein Zitat daraus nicht für Wiki geeignet. Und die dortigen Behauptungen (2500 Jahre, Kreise, Geraden) sind auch für den Nichtfachmann leicht erkennbarer Unfug.

3) Zur Erweiterten Wahrscheinlichkeit: Die Arbeit "A review of extended probabilities" http://bayes.wustl.edu/etj/articles/review.extended.prob.pdf wurde, obwohl rein theoretisch, vom legendären John Maddox persönlich in Nature besprochen: http://www.hs-augsburg.de/~mueckenh/Nature.jpg und sehr oft in Fachjournalen zitiert.

--WM

Mit Ihnen zu diskutieren ist wirklich anstrengend. Der Satz zu Cantor stammte nicht von mir, sondern von Ihnen, SIE hatten diesen Satz hier eingefügt, ich hatte ihn lediglich mit Anführungszeichen versehen. Aber wenn Ihnen der Satz nicht recht ist, dann nehme ich ihn natürlich wieder heraus. --Suhagja (Diskussion) 14:53, 13. Okt. 2012 (CEST)Beantworten
Sie können nicht lesen. Ich habe niemals geschrieben, dass Cantor ein Axiom zur unendlichen Menge eingeführt hat.

Die konkrete Kritikpunkte Lemmermeiers wurden widerlegt (z. B. wird die fehlende Einführung der reellen Zahlen auf S. 20 moniert, auf S. 8 wurden die rellen Zahlen aber schon eingeführt). Die zitierten Sätze sind unsubstantiierte Beleidigungen. --WM (nicht signierter Beitrag von 84.155.164.169 (Diskussion) 14:10, 13. Okt. 2012 (CEST)) Beantworten

Das Zitat aus dem Zentralblatt ist als solches gekennzeichnet und gibt den Gesamttenor der Zentralblattbesprechungen treffend wieder. Wenn Ihnen der Inhalt nicht paßt, dann wenden Sie sich bitte an die Zentralblattredaktion, hier ist nicht der richtige Ort für diese Diskussion. --Suhagja (Diskussion) 14:55, 13. Okt. 2012 (CEST)Beantworten
Herr Mückenheim, Wikipedia stellt das dar, war in der Literatur gesagt wird. Wenn in einer Fachzeitschrift eine negative Kritik steht, wird darauf auch hingewiesen. Das scheint mir ein legitimes Verfahren zu sein; es entspricht insofern auch den enzyklopädischen Gepflogenheiten. Wenn Sie in einer anderen Publikation dagegen widersprechen, kann man gerne Ihre „Gegenrede“ dazu einfügen. Können wir hier auf etwas verweisen? Zweite Frage: Es ist aber unbestritten korrekt, dass Sie in „Mathematik für die ersten Semester“ „die Existenz unendlicher Mengen aus[]schließen“, ja? —Pill (Kontakt) 15:14, 13. Okt. 2012 (CEST)Beantworten
Die Darstellung von Suhagja ist einseitig. Ich habe sie korrigiert. Sollten Beleidigungen, die auf dubiose Weise ihren Weg in die Literatur gefunden haben und dort einige Zeit existieren, jederzeit in einem populären Medium wie Wikipedia wiedergegeben werden dürfen? Das glaube ich nicht!

Gegenrede zur Rezension: Ich verweise auf Seite 8 meines Buches, wo in allen drei Auflagen die reellen Zahlen eingeführt werden. Weitere Fehler des Rezensenten findet jeder Leser meines Buchs zuhauf. Zur Frage 2) Es ist korrekt, dass ich die Existenz vollendet-unendlicher Menge ausschließe. Das beinhaltet nicht den Ausschluss potentiell unendlicher Folgen wie der Folge der natürlichen Zahlen, oder von Irrationalzahlen,oder von Kreisen oder Geraden, die in meinem Buch vorkommen und verwendet werden. Damit ist die Mathematik der letzten 2500 Jahre völlig abgedeckt, mit Ausnahme lediglich der transfiniten Mengenlehre. --WM (nicht signierter Beitrag von 84.155.164.169 (Diskussion) 19:06, 13. Okt. 2012 (CEST)) Beantworten

Danke. Nun, ich kann nachvollziehen, dass Sie mit der Darstellung nicht einverstanden sind, allerdings handelt es sich bei der Zeitschrift auch hier um ein zitierfähiges Medium. Wir wollen einen Diskurs zu einem Thema abdecken, genau das ist das Anliegen von Wikipedia. Deshalb werden wir auch in Wikipedia nicht einfach diese Position weglassen können, wenn gerade diese es ist, die den Diskurs bestimmt. Kann man Ihre Kritik an der Rezension vielleicht auf Ihrer Internetseite oder an anderer Stelle nachlesen? Ich würde dann die aktuelle Formulierung beibehalten aber direkt danach Ihre Zurückweisung formulieren. So ist das bei derartigen Fälle Usus; wir können leider nicht aus Wikipedia selbst zitieren. Mit Bitte um Verständnis, —Pill (Kontakt) 19:14, 13. Okt. 2012 (CEST)Beantworten

Ich bin gerade auf http://arxiv.org/ftp/math/papers/0505/0505649.pdf gestoßen, wo sie ja doch explizit behaupten, dass irrationale Zahlen nicht existieren würden. Genau das haben sie hier in der Diskussion die ganze Zeit bestritten.--Suhagja (Diskussion) 15:15, 14. Okt. 2012 (CEST)Beantworten

Sie müssen zwei oder eigentlich drei Dinge auseinanderhalten:

1) Unter Berücksichtigung der Realität existieren die Dezimaldarstellungen irrationaler Zahlen nicht. Irrationale Zahlen sind auch nicht beliebig genau darstellbar, weder als Ziffernfolge noch als Diagonale eines Quadrates oder Umfang eines Kreises. Existieren tun sie aber, z. B. als Lösungen von Gleichungen. Diesen Standpunkt nehme ich aber weder im Unterricht ein, noch in der mathematischen Diskussion, weil im Unterricht zu kompliziert und für alle praktischen Fälle irrelevant, und weil unter Mathematikern der Realitätsbezug i.A. ganz abgelehnt wird. 2) Unter Nichtberücksichtigung der Realität, also vom gegenwärtigen mathematischen Standpunkt aus, sind Irrationalzahlen beliebig genau darstellbar. Trotzdem existiert keine Dezimaldarstellung ohne jeden Fehler: Es gibt keine Dezimaldarstellung, aus der ein Leser den Wert der Zahl entnehmen könnte. 3) Selbst in dieser Idealwelt existieren nicht mehr als abzählbar unendlich viele Zahldarstellungen, dezimal, binär oder verbal (also durch Definition von Folgen oder Reihen oder Lösungen von Gleichungen oder Diagonalen ...).

--WM

Nur endlich viele. Mehr ist physikalisch nicht möglich. Hier ist aber leider nicht der Ort, das zu diskutieren (WP:DS). --79.204.232.41 22:43, 14. Okt. 2012 (CEST)Beantworten
Wie lang ist dann in ihrer Realität die Diagonale des Einheitsquadrates? In meiner Realität ist das die Wurzel aus 2. (Und schon die alten Griechen bewiesen vor 2500 Jahren, dass diese eine irrationale Zahl ist.) Oder gibt es diese Diagonale in ihrer Realität nicht? --Suhagja (Diskussion) 07:42, 15. Okt. 2012 (CEST)Beantworten
In einer Realität ohne Massen wäre die Diagonale Wurzel aus 2. Doch gibt es keine solche Realität - und dort gäbe es auch kein Quadrat. Doch wurde oben schon zu Recht bemerkt, dass hier nicht der Ort ist, diese Dinge zu diskutieren. --WM (nicht signierter Beitrag von H-Hippasos (Diskussion | Beiträge) 07:58, 15. Okt. 2012 (CEST)) Beantworten
Sicher ist das nicht der Ort für eine inhaltliche Diskussion. Trotzdem könnten sie ja kurz in einem Satz sagen, was in ihrer Realität die Länge der Diagonale des Quadrates ist. Denn wenn es das Quadrat gibt, dann muß seine Diagonale auch eine Länge haben. --Suhagja (Diskussion) 08:43, 15. Okt. 2012 (CEST)Beantworten
Würden Sie auch fragen, wie groß denn ein Mensch sei, wenn ich behaupte, dass es Menschen gibt? Wie auch beim Menschen hängt hier die gefragte Größe sehr von der Massenverteilung ab, wobei sowohl die Massen der Quadratseiten als auch die übrigen Massen in der Nähe des Quadrates zu berücksichtigen sind. Denken Sie nur an die mögliche Existenz eines schwarzen Loches im Quadrat. Eine prinzipiell verzerrende und die ideale Länge verändernde Wirkung, wenn auch viel geringeren Ausmaßes, hätten schon Quadratseiten von 1 fg Masse. --WM (nicht signierter Beitrag von H-Hippasos (Diskussion | Beiträge) 10:37, 15. Okt. 2012 (CEST)) Beantworten
Was hat diese Antwort mit meiner Frage zu tun? Und wenn sie meinen, dass sich die Länge von Quadratseiten oder Diagonalen nicht berechnen läßt, warum halten sie dann Mathematikvorlesungen, in denen genau solche Rechnungen durchgeführt werden? --Suhagja (Diskussion) 18:07, 15. Okt. 2012 (CEST)Beantworten
Ich meine nicht, dass sich die Längen nicht berechnen lassen, sondern dass man, um dies genau zu tun die allgemeine Relativitätstheorie bemühen und vor allem erst einmal die gegebene Massenverteilung kennen müsste. Wie ich schon mehrfach schrieb, klammere ich in Vorlesungen diese Komplikationen aus und verfahre nach Robinsons Vorschlag so, als existierten unendliche Mengen (und masselose Gebilde), also genau so wie es die moderne Mathematik tut. --H-Hippasos (Diskussion) 22:27, 15. Okt. 2012 (CEST)Beantworten
Sie weichen einer Antwort aus. Auch wenn sie die Relativitätstheorie bemühen gibt es immer noch Quadrate mit rationalen Seitenlängen, deren Diagonalenlänge aber irrational ist. Denn auch in den Formeln der Relativitätstheorie kommen Quadratwurzeln vor und die Wurzeln aus rationalen Zahlen sind oft irrational. --Suhagja (Diskussion) 07:08, 16. Okt. 2012 (CEST)Beantworten
Ich weiche nicht aus, sondern stehe genau zu dem, was ich oben gesagt habe. Und dass in der RT Wurzeln und idealisierte Quadrate vorkommen, hat nichts mit materiellen Quadraten zu tun. Die Zahlentheorie beweist leicht ohne geometrischen Bezug, dass die Gleichung 2*a^2 = b^2 mit natürlichen Zahlen keine Lösung besitzt. Das hat schon mein Pseudonymenspatron vor 2500 Jahren bewiesen. Daher ist die Diagonale eines idealen Quadrates niemals mit demselben Maßstab messbar wie eine Seite. Doch gibt es eben kein ideales Quadrat. (nicht signierter Beitrag von H-Hippasos (Diskussion | Beiträge) 07:55, 16. Okt. 2012 (CEST)) Beantworten
"Die Zahlentheorie beweist leicht ohne geometrischen Bezug, dass die Gleichung 2*a^2 = b^2 mit natürlichen Zahlen keine Lösung besitzt." Eben. Und deshalb muß in einem Quadrat entweder die Seitenlänge oder die Diagonallänge irrational sein. Es gibt also keine Geometrie ohne irrationale Zahlen. --Suhagja (Diskussion) 10:33, 16. Okt. 2012 (CEST)Beantworten

Es gibt ja auch irrationale Zahlen! Sie sind durch Folgen, Reihen, Gleichungen usw. endlich definiert, so dass (abgesehen von physikalischen Beschränkungen, die man für jeden praktischen Zweck vernachlässigen kann und die man in der modernen Mathematik sogar bewusst ablehnt, zur Kennntnis zu nehmen, was aber ihre Präsenz keineswegs mindert) jede beliebige Ziffer der Dezimalentwicklung berechnet werden kann. Es gibt keine Dezimaldarstellung, aus der Sie oder sonst jemand erkennen könnten, welche irrationale Zahl damit gemeint ist. Deswegen nützt die aktuale Unendlichkeit überhaupt nichts! --H-Hippasos (Diskussion) 18:08, 16. Okt. 2012 (CEST)Beantworten

Neuauflage

Als einziger unklarer Punkt bleibt noch die Formulierung " In einer Neuauflage des Buches kommen seine diesbezüglichen Thesen allerdings nur noch im Vorwort vor." Die beruht auf der Darstellung im Forschungsbericht der FH Augsburg, s.44, Linke Spalte, Dort steht "In der 1. Auflage seines im renommierten Münchner Oldenbourg- Verlag 2009 erschienenen Lehrbuchs für höhere Mathematik, „Mathematik für die ersten Semester“, machte er sich grundsätzliche Gedanken zum Mathematikverständnis. Da diese ab der 2. Auflage (2010) nur noch verkürzt zu lesen sind, sollen sie hier erneut vollständig abgedruckt werden und zum Diskurs anregen". Hier in der Diskussion schreibt der Nutzer WM nun, das wäre gar nicht wahr. Ich würde erstmal sagen, dass der Forschungsbericht der FH die zuverlässigere Quelle ist als die Aussage eines anonymen Wikipedia-Autors, bei dem wir gar nicht sicher wissen, ob es sich um Wolfgang Mückenheim handelt. Der einzige Ausweg, den ich sehe: Wolfgang Mückenheim veröffentlicht auf seiner offiziellen FH-Webseite eine Erklärung, dass es sich bei der Darstellung im FH-Forschungsbericht um eine Flaschinformation handelt und in Wirklichkeit der Inhalt des Buches (in Bezug auf seine Thesen zur Unendlichkeit) bei der 2.Auflage nicht verändert wurde. Eine solche offizielle Erklärung könnte dann als Beleg für eine entsprechende Umformulierungen oder Löschung des letzten Satzes im Abschnitt "Forschung und Lehre" verwendet werden. --Suhagja (Diskussion) 15:09, 13. Okt. 2012 (CEST)Beantworten

Nun ja, ich würde aber das im Artikel vormals Gesagte nicht aus dieser Aussage herleiten. Das steht doch dort gar nicht. Im Übrigen scheint mir das doch leicht anhand der beiden Auflagen überprüfbar zu sein. Liegen sie dir vor? Grüße, —Pill (Kontakt) 15:15, 13. Okt. 2012 (CEST)Beantworten

In allen drei Auflagen meines Buches wird meine Position im Vorwort zutreffend und unverändert geschildert. Der Inhalt des Buches (in Bezug auf meine Thesen zur Unendlichkeit) wurde bei der 2. und 3. Auflage nicht verändert. Lediglich der auf die Auflagennummer und damit zusammenhängende Fragen (wie Lösungen der Übungsaufgaben) bezügliche Teil wurde angepasst. Der Redakteur des Forschungsberichtes hat hier etwas missverständlich formuliert. --WM


Ich habe nun eine ausgewogenere Kritik hergestellt. Oder muss stets die krasseste Beschimpfung und ohne objektive Fundierung angebracht werden? --WM (nicht signierter Beitrag von 84.155.164.169 (Diskussion) 19:06, 13. Okt. 2012 (CEST)) Beantworten

Sorry, aber so geht das nicht. Der Artikel in seiner jetzigen Form schafft es nicht, dem Außenstehenden zu vermitteln, worum es in der Diskussion überhaupt geht.

Ich versuche mal eine Zusammenfassung der Auseinandersetzung mit meinen Worten. WM behauptet, es gäbe keine unendlichen Mengen, jedenfalls keine aktual unendlichen. Zum Beispiel gäbe es nur endlich viele natürliche Zahlen: die Reihe der natürlichen Zahlen hätte Lücken, weil es Zahlen gibt, die sich nicht kommunizieren lassen. Die Gegenmeinung wird von den professionellen Mathematikern vertreten, diese sind der Meinung, dass es ohne unendliche Mengen auch einen großen Teil der übrigen Mathematik nicht geben kann.

Das war jetzt eine Zusammenfassung in meinen Worten, die ich so natürlich nicht in den Artikel schreiben kann, weil es eben meine Zusammenfassung und damit Theoriefindung wäre. Wir sollten deshalb versuchen Zitate von WM und Zitate der Gegenseite zu finden, die genau diesen Widerspruch klarmachen, und zwar auch für denjenigen Leser, der nicht im Diskurs über Mengenlehre und Grundlagen der Mathematik Zuhause ist.

Deshalb folgender Vorschlag: wir suchen zwei Zitate von WM, die klarmachen, worum es ihm geht, also die Nichtexistenz unendlicher Mengen und die Endlichkeit der natürlichen Zahlen. Und wir suchen zwei passende Zitate der Gegenseite, um eine ausgewogene Darstellung zu gewährleisten.

In seiner jetzigen Form ist der Artikel jedenfalls nicht akzeptabel und vor allem für den Außenstehenden völlig unverständlich. --Suhagja (Diskussion) 00:17, 14. Okt. 2012 (CEST)Beantworten

Zahlen, die nicht kommuniziert werden können, haben in der Mathematik als Einzelobjekte keinen Platz, weil Mathematik im Wesentlichen Kommunikation von Individuen (mit anderen oder mit sich selbst) ist. Aufgrund physikalischer Beschränkungen können unendliche Ziffernfolgen nicht kommuniziert werden. Ein einfaches Beispiel bietet der handelsübliche Taschenrechner, der keine Kommunikation von Folgen mit mehr als 10 Symbolen erlaubt. Ein anderes Beispiel bietet das ausnutzbare Universum, das mit seinen 1080 Atomen keine Kommunikation von Folgen mit mehr 1080 Symbolen erlaubt. Die Existenz einer übergeordneten Instanz, die einen erweiterten mathematischen Diskurs ermöglichen würde, halte ich für bisher unbewiesen.

Diese Fakten sind nicht verhandelbar. Sie sind da! Wenn Mathematiker sie "ablehnen", dann ist das ungefähr so, als ob jemand die Schwerkraft "ablehnt". Trotz dieser Beschränkungen funktioniert die Mathematik. Also ist die Mainstream-Meinung falsch. Was ist daran so schwer zu verstehen (außer der Überwindung der Trägheit des konventionellen Denkens)? --WM (nicht signierter Beitrag von 84.155.182.160 (Diskussion) 10:34, 14. Okt. 2012 (CEST)) Beantworten

Ja,der obige Absatz war so ungefähr das, was ich mir als Zusammenfassung von WM's Thesen im Artikel vorstellen würde, vielleicht noch etwaskürzer und auf den Punkt gebracht. Ich werde nachher mal nach entsprechenden Zitaten in "offiziellen" Quellen suchen und das dann in den Kritikabschnitt einbauen, vielleicht zusammen mit einer Einordnung in den Kontext der Diskussion. --Suhagja (Diskussion) 11:53, 14. Okt. 2012 (CEST)Beantworten

Formulierungs-Vorschlag Kritik-Abschnitt

Vorschlag:

Von professionellen Mathematikern kritisiert werden Mückenheims Thesen zur Mengenlehre und zum Unendlichen in der Mathematik. Mückenheim meint, dass "die Mathematik wie jede andere Wissenschaft gezwungen [sei], mit endlichen Mitteln auszukommen", dass "viele Zahlen, deren Darstellung 10100 verschiedene Ziffern erfordern würde, nicht definiert und deshalb auch nicht verwendet werden [könnten]", dass die "Menge der Ziffern einer Zahl endlich" und irrationale Zahlen keine Zahlen, sondern nur Ideen seien, und dass "schon der Zwischenwertsatz oder der Fundamentalsatz der Algebra" keine uneingeschränkte Gültigkeit hätten, sondern "Ausnahmen leiden".[1][2]

Im Zentralblatt MATH spricht Franz Lemmermeyer in seiner Besprechung zu Mathematik für die ersten Semester von einem "Feldzug gegen die moderne Mathematik".[3]. In seiner Besprechung zu Die Mathematik des Unendlichen bezweifelt derselbe Rezensent die Begriffe, Definitionen und Konzepte, mit denen Mückenheim die Inkosistenz der Cantorschen Mengenlehre und die Inkorrektheit der Überabzählbarkeit der reellen Zahlen bewiesen haben will.[4]

Ende Vorschlag. Damit wäre dann alles herausgenommen, was als persönlicher Angriff aufgefaßt werden könnte, z.B. das Zentralblatt-Zitat, die Schlussfolgerungen basierten auf „the sloppiness of his notions, his inability of giving precise definitions, his fundamental misunderstanding of elementary mathematical concepts, and sometimes […] on nothing at all“. Stattdessen wird erklärt, worum es in der Kontroverse inhaltlich geht. Einwände? --Suhagja (Diskussion) 13:58, 14. Okt. 2012 (CEST)Beantworten

  1. Forschungsbericht 2011 der FH Augsburg S.44ff.
  2. W.Mūckenheim: Phyical Constraints of Numbers
  3. Besprechung zu "Mathematik für die ersten Semester", 2nd rev. ed.
  4. Besprechung zu "Die Mathematik des Unendlichen"
Anscheinend keine Einwände. Ich setze das dann so um. --Suhagja (Diskussion) 15:30, 14. Okt. 2012 (CEST)Beantworten
Natürlich gibt es Einwände, es ist denn auch ein durchaus bemerkenswertes Verfahren, aus dem Ausbleiben einer Reaktion nach eineinhalb Stunden zu folgern, dass es keine Einwände geben würde. Es gibt im Übrigen keine Kontroverse. Es gibt zwei äußerst negative Rezensionen eines Werkes in einer relevanten Zeitschrift. Meine Meinung ist, dass das erwähnenswert ist. Selbstverständlich hat aber Herr Mückenheim das Recht, dass auch seine Sicht der Dinge geschildert wird. Das ist nur fair und angemessen, da sich der Leser dann auch das Ursprungswerk und die Replik durchlesen kann, wenn er näher interessiert ist. Du hast selbige entfernt und ersetzt durch irgendwelche Zitate, die, wie jedem Leser offenkundig ist, natürlich Herrn Mückenheim in ein schlechtes Licht rücken sollen (das sieht man schon am Anfang: „Von professionellen Mathematikern kritisiert … Mückenheim meint, dass …“; der Leser bezieht den ersten Teil auf den zweiten Satz und, tada, plötzlich steht da nun ein Kritikabschnitt, der einfach auf jede Gegenposition verzichtet). Aus der hiesigen Begründung wird nur ersichtlich, dass es sich offensichtlich um einen Beitrag zu einem Kuhhandel mit der dargestellten Person handelt (nach dem Motto: „wir schildern das negativ, dafür nehmen wir ein Zitat der Gegenseite heraus“); davon bin ich wenig begeistert. —Pill (Kontakt) 18:01, 14. Okt. 2012 (CEST)Beantworten
Die Gegenposition ist ja vorhanden, denn Mückenheims Thesen werden recht ausführlich dargestellt. Ich verstehe auch nicht, was mit den Zitaten nicht in Ordnung sein soll, denn diese geben doch nun die Essenz seiner Thesen korrekt wieder und sind nicht aus dem Zusammenhang gerissen. (Und sie stammen aus einer zitierfähigen Quelle, nämlich dem Forschungsbericht der FH.) Wenn es eine veröffentlichte Gegenposition zur Kritik an Mückenheims Thesen gäbe, wenn also z.B. Mückenheim sich in irgendeiner Veröffentlichung mit der Kritik auseinandergesetzt hätte, dann könnte das natürlich in den Artikel. (Der Konjunktiv soll andeuten, dass ich das für äußerst unwahrscheinlich halte. WM hat ja in der Diskussion selbst eingeräumt, seine Thesen auch in seinem Lehrbuch nur im Vorwort, nicht im Text selbst, erwähnt zu haben.) Der jetzt verlinkte Text auf Mückenheims Webseite ist offensichtlich nicht Wikipedia-zitier-würdig und setzt sich vor allem nicht mit den wesentlichen inhaltlichen Punkten der Kritik auseinander.--Suhagja (Diskussion) 18:18, 14. Okt. 2012 (CEST)Beantworten

Erst einmal müsste nachgewiesen werden, dass diese Ansichten überhaupt relevant sind. Bis jetzt habe ich keinen, aber auch absolut keinen von Mückenheim geleisteten Beitrag zur Mathematik gefunden (Veröffentlichung in Fachzeitschrift o.ä.). Falls das so ist, dann ist auch klar, dass er von Mathematikern nicht etwa ignoriert wird, sondern bei diesen überhaupt nicht bekannt ist. Dann ist es ein Verstoß gegen WP:KTF und WP:NPOV, hier diesen Vorstellungen eine Plattform zu bieten. Chuzpe ist kein Ersatz für Reputation. Dass überhaupt ein Mathematiker (Lemmermeyer) darauf reagiert hat, ist schon ungewöhnlich, weitere wird man kaum finden. Wir tragen doch auch nicht die Politiker vom FC Bundestag bei den Fußballern ein oder Helmut Schmidt bei den Pianisten usw. --79.204.232.41 14:38, 14. Okt. 2012 (CEST)Beantworten

Ich hatte ja einen Löschantrag gestellt, der aber ziemlich einhellig abgelehnt wurde. --Suhagja (Diskussion) 15:12, 14. Okt. 2012 (CEST)Beantworten
Als Physiker hat er Beiträge geleistet. Das sind von der Wissenschaftsgemeinschaft akzeptierte, offenbar experimentalphysikalische Arbeiten. Mathematik hat er nicht einmal im Hauptfach studiert, geschweige denn eine Abschlussarbeit geschrieben, geschweige denn eine, die einen Beitrag zur Mathematik darstellt (wie für Dissertationen gefordert), geschweige denn einen wesentlichen Beitrag – wenn ich nichts übersehen habe. Es kommt übrigens durchaus vor, dass Außenseiter oder Quereinsteiger wesentliche Beiträge leisten (wie z.B. Günter Wächtershäuser in der Biochemie). --79.204.232.41 16:24, 14. Okt. 2012 (CEST)Beantworten
  • Die Diskussion hier ist schon sehr merkwürdig. Da spielt sich ein User als Scharfrichter gegen einen Mathe-Professor auf, indem er sich Aussagen zu eigen macht, die von einem Kritiker stammen, der seit 2007 als Mathelehrer in einem Mädchenpensionat tätig ist. Letzteres ist gewiss nicht tadelnswert, verleiht ihm aber nicht unbedingt die hier aufgebauschte Position als Chefankläger. --Gerbil (Diskussion) 16:38, 14. Okt. 2012 (CEST)Beantworten
Das finde ich nun merkürdig – Bewertung der Qualifikation nach Gehaltsstufe (Lehrer ggü. FH-Professor). Ist aber auch gleichgültig: Wir verleihen keine Reputation und nehmen auch keine. Es fehlen immer noch Belege für die Relevanz der mathematischen Ansichten des Physikers Mückenheim. Für einen knapp relevanten Wissenschaftler ist nicht mehr als ein eher kurzer Artikel mit der Darstellung dessen, weshalb er relevant ist, angemessen (um nicht in Konflikt mit WP:KTF und WP:NPOV zu geraten). --79.204.232.41 17:39, 14. Okt. 2012 (CEST)Beantworten
Die Relevanz der Kritik ergibt sich nicht aus dem Namen des Kritikers, sondern aus der Zeitschrift, in der sie veröffentlicht wurde. Weitere Rezeptionen zu Mückenheims Thesen können gerne ergänzt werden, wenn sie in reputablen Quellen erschienen sind. --Suhagja (Diskussion) 17:44, 14. Okt. 2012 (CEST)Beantworten


Relevanz einer Kritik ergibt sich vor allem aus deren Inhalt und nicht aus dem Namen des Erscheinungsmediums. Ich habe zwar von Herrn Dr. Lemmermeyers Kritik Kenntnis genommen, ihn aber für zu unwichtig erachtet, um ihm meine Aufmerksamkeit zu widmen. Wenn seine Aussagen aber jetzt in die Welt hinausposaunt werden, dann kann ich folgendes dazu sagen:

Herr Dr. Lemmermeyer ist ein Verleumder! Diese Behauptung habe ich anhand von einigen seiner "Kritik"punkte hier nachgewiesen. http://www.hs-augsburg.de/~mueckenh/Kommentar/ WM

Im verlinkten Text behaupten Sie, Lemmermeyer habe in seiner Rezension wahrheitswidrig geschrieben, reelle Zahlen seien vor Seite 20 noch nicht eingeführt worden, obwohl sie diese bereits auf Seite 8 eingeführt hätten. Man kann Teile des Buches auf http://www.amazon.de/Mathematik-f%C3%BCr-die-ersten-Semester/dp/348658913X#reader_348658913X einsehen, darunter die Seite 8, dort werden die Bezeichnungen für die verschiedenen Zahlbereiche eingeführt, darunter die Bezeichung R für die reellen Zahlen. Es wird auf Seite 8 auch erwähnt, dass es sich bei reellen Zahlen um Zahlen mit Dezimaldarstellung handelt. (Es wird nicht gesagt, ob damit endliche oder unendliche Dezimnaldarstellungen gemeint sind :-)). Ob man das als Einführung der reellen Zahlen bezeichnet, das liegt zugegebenermaßen im Auge des Betrachters. Jedenfalls handelt es sich bei Lemmermeyers Kritik sicher nicht um Schlampigkeit oder ein Übersehen, sondern geht es ihm offenkundig darum, daß er reelle Zahlen exakt definiert haben will. Man kann sicher darüber streiten, ob dies in einem solchen Lehrbuch wirklich sinnvoll und notwendig ist. (Ich führe in Analysis-Vorlesungen die reellen Zahlen ebenfalls mittels Dezimaldarstellungen in, gehe dabei freilich schon ein wenig mehr ins Detail, angefangen mit der Identität 1=0,9999... Und vor allem definiere ich reelle Zahlen eben mittels unendlicher Dezimaldarstellungen und sage genau was gemeint ist: Dezimalbrüche, bei denen endlich viele Zahlen vor dem Komma und unendlich viele Zahlen hinter dem Komma stehen.) In Anbetracht der vom Autor vertretenen philosophischen Thesen finde ich es schon ziemlich irritierend, dass auf Seite 8 nicht auf den Unterschied zwischen endlichen und unendlichen Dezimaldarstellungen eingegangen wird. Hat der Autor hier endliche Dezimaldarstellungen gemeint? Dann dürften große Teile des restlichen Buches logisch inkosistent sein, siehe Zentralblatt-Rezension. Oder hat er unendliche Dezimaldarstellungen gemeint? Das wäre dann zwar korrekt (und hätte im Buch explizit erwähnt werden müssen, da es der Student ja sonst nicht weiß), es würde allerdings den vom Autor im Vorwort des Buches vertretenen Thesen widersprechen. --Suhagja (Diskussion) 10:13, 15. Okt. 2012 (CEST)Beantworten

Mit Bezug auf den von Herrn Dr. Lemmermeyer monierten Satz "Sei alpha eine reelle Zahl" ist die Einführung auf Seite 8 als Zahl mit Dezimaldarstellung, wie sie jeder Student aus der Schule kennt genau angemessen. Eine spätere Präzisierung anhand von Dedekind-Schnitten (S. 36 f) wird zum Verständnis diese Satzes nicht gebraucht. Die Frage nach endlich oder unendlich ist irrelevant, weil auch rationale Zahlen eine unendliche Dezimaldarstellung besitzen. Lediglich die allgemein angewandte Konvention, folgende Perioden aus Nullen wegzulassen, suggeriert den Eindruck einer endlichen Darstellung. Tatsächlich ist Ihre Frage nicht mit ja oder nein zu benatworten, denn man muss unterscheiden zwischen der poterntiellen Unendlichkeit: Kann man jede gewünschte Ziffer d_n der Dezimalentwicklung angeben? und der aktualen Unendlichkeit: Kann man eine Dezimalentwicklung angeben, die sich von allen anderen Zahlen unterscheidet. Diese Frage ist zu verneinen, obwohl nach meinen Erfahrungen die meisten Mathematiker das nicht wissen, weil sie das Bildungsgesetz wie "0,111..." einer Zahl mit der tatsächlich vorgelegten unendlichen Dezimalentwicklung verwechseln. "0,111..." ist genau so ein endliches Bildungsgesetz wie 1/9. Niemand könnte aus einer vorgelegten Dezimalentwicklung auf die gedachte Zahl schließen, gäbe es nicht Regeln wie "..." bedeutet immer so weiter u. ä. Doch wird wohlniemand erwarten, dass ich diese komplizierten und von vielen Mathematikern nicht überblickten Zusammenhänge in ein Buch für die ersten Semester aufnehme. Das währe ja Irrwitz! Wie ich am Ende des Vorwortes schreibe, gilt: Doch dieser Mangel ist allenfalls für die mathematische Grundlagenforschung von Bedeu-tung, und selbst dafür hat der Erfinder der Non-Standard-Analysis festgestellt: Unendliche Gesamtheiten existieren in keinem Sinne des Wortes, weder real noch ideell. Genauer ge-sagt, jede Erwähnung oder Behauptung unendlicher Gesamtheiten ist buchstäblich sinnlos. Trotzdem sollten wir weiterhin wie gewohnt Mathematik machen, d. h. wir sollten so tun als ob unendliche Gesamtheiten wirklich existierten [10]. Ohne also den Mangel aus unserem Bewusstsein zu verdrängen, können und dürfen wir zur Erkenntnis der Verschiedenheit der Dinge in der Wirklichkeit weiterhin so vorgehen, als gäbe es unendliche Mengen. Deswegen wird das Problem im folgenden Text gar nicht mehr erwähnt. (Das Zitat stammt übrigens von A. Robinson, nicht von mir.)

--WM (nicht signierter Beitrag von H-Hippasos (Diskussion | Beiträge) 10:37, 15. Okt. 2012 (CEST)) Beantworten

Jeder Leser seiner Rezension und meines Buches kann die Gegenüberstellung seiner Aussagen und des Inhalts meines Buches nachprüfen. Einer juristischen Klärung sehe ich gern entgegen, werde aber selbst nicht aktiv werden, denn das wäre im Zeitalter des Internets ein Fass ohne Boden. Ausgesprochen primitive Beschimpfungen, aber auch subtilere Beleidigungsversuche durch Mathematiker oder solche, die sich dafür halten, erlebe ich beinahe täglich. Erst gestern wurde hier wahrheitswidrig behauptet, meine "Thesen" seien vom Oldenbourg-Verlag zensiert worden bzw. würden "nur noch" im Vorwort auftreten. Nur dort standen sie und zwar in allen Auflagen. WM
Durch eine Verkettung unglücklicher Umstände und das Vorhandensein eines Komplizen in der Redaktion des Zentralblattes konnte diese Verleumdung im Zentralblatt erscheinen. Solche Unfälle passieren. (Auf die juristische Durchsetzung einer Gegendarstellung habe ich aus den genannten Gründen verzichtet.) Es gibt aber keinen Grund, einmal dort erschienene Texte für absolut wahr zu halten.
--WM (nicht signierter Beitrag von 84.155.182.160 (Diskussion) 21:10, 14. Okt. 2012 (CEST)) Beantworten
Wir können den Namen des Rezensenten gerne aus der Rezension herausnehmen. Wir sollten aber darstellen, worum es bei der Kontroverse inhaltlich geht, also was die wesentlichen kontroversen Punkte in Mückenheims Theorie sind und daß diese von den Mathematikern vor allem deshalb abgelehnt werden, weil große Teile der Mathematik eben auf den von Mückenheim abgelehnten Axiomen beruhen. --Suhagja (Diskussion) 07:47, 15. Okt. 2012 (CEST)Beantworten

Ich lehne diese Axiome (es geht ja eigentlich nur um das Unendlichkeitsaxiom) nicht ab. Ich habe vielmehr erkannt und bin dabei, diese Erkenntnis zu verbreiten, dass damit unerfüllbare Forderungen verknüpft sind. Mathematik ist zumindest bei der Kommunikation von Kopf zu Kopf auf reale Medien angewiesen. Damit ist die Vorstellung, Mathematik sei völlig realitätsfrei, unhaltbar, vielmehr finsterstes Mittelalter - vor der Aufklärung. Die Mathematik ist neben der Theologie die einzige Wissenschaft auf einer derart primitiven Stufe. Es ist nicht möglich natürliche Zahlen zu benennen, deren Kolmogoroff-Komplexität größer als 10^100 ist! Auch wenn das Gegenteil axiomatisch gefordert oder gar behauptet wird! Der Beweis für meine "These" ist einfach. Und im Gegensatz zur Theologie ist in der Mathematik keine Hilfe einer höheren Instanz zu erwarten.

Diese Erkenntnis wird von den meisten Mathematikern damit zurückgewiesen, dass ja die Endlichkeit des ausnutzbaren Teils des Universums nicht sicher sei. Diesen Standpunkt kann man einnehmen, obwohl damit ein Wechsel auf die Zukunft gezogen wird, denn der zur Zeit als Informationsspeicher ausnutzbare Teil ist sehr beschränkt. Aber selbst unter der Annahme eines unendlich ausgedehnten und ewigen Universums ist es unmöglich, überabzählbar viele Zahlen zu identifizieren. Das wird von den meisten Mathematikern nicht bestritten. Der Zermelosche Wohlordnungssatz ist demnach falsch, denn niemand kann wohlordnen, was er nicht identifizieren kann. Dieses Wissen dagegen ist nach meinen Erfahrungen unter der Mehrheit der Mathematiker nicht verbreitet, wenigstens nicht bewusst. --H-Hippasos (Diskussion) 17:51, 15. Okt. 2012 (CEST)Beantworten

Heißt das jetzt, dass sie die Mathematik der letzten 2500 Jahre doch ablehnen? Das hatten sie doch in der Diskussion bisher immer bestritten. (Der Zermelosche Wohlordnungssatz sagt übrigens nicht, dass man Mengen wohlordnen kann, sondern dass es eine Wohlordnung gibt. Er ist ein Existenzsatz und beschreibt keinen Algorithmus.) --Suhagja (Diskussion) 18:12, 15. Okt. 2012 (CEST)Beantworten
Ich lehne die Mathematik nicht ab, sondern ausschließlich die transfinite Mengenlehre, die mit der Mathematik nicht das Geringste zu tun hat - auch wenn ihre Proponenten das der Welt immer wieder weismachen möchten! Das ist nichts weiter als Hochstapelei. Und zu Zermelo sollten Sie sich besser kundig machen. Der Zermelosche Wohlordnungssatz wurde 1904 veröffentlicht. Die Arbeit trägt die Überschrift: "Beweis, dass jede Menge wohlgeordnet werden kann." Im Text steht: "So folgt also für jede transfinite Mächtigkeit ... je zwei Mengen sind miteinander „vergleichbar"; d. h. es ist immer die eine ein-eindeutig abbildbar auf die andere oder einen ihrer Teile." DBeide Aussagen sind eindeutig falsch. --H-Hippasos (Diskussion) 18:31, 15. Okt. 2012 (CEST)Beantworten
In der Überschrift steht nicht, dass man jede Menge wohlordnen kann, sondern nur dass jede Menge wohlgeordnet werden kann. --Suhagja (Diskussion) 18:47, 15. Okt. 2012 (CEST)Beantworten


"Man" kann es also nicht. Es kann aber getan werden. Doch wer tut es? Übrigens ist Ihr Einwand nicht nur grammatisch verfehlt. Es geht hier um die Passiv-Konstruktion zu einer Aktion, die sich übrigens erst nach vielen Jahrzehnten als undurchführbar herausgestellt hat. Fraenkel schreibt 1923, zwar bedenklich aber noch vergleichsweise hoffnungsfroh, "daß die wirkliche Ausführung der Wohlordnung bis heute noch nicht einmal bei gewissen einfachsten nichtabzählbaren Mengen gelungen ist." Man beachte: Bis heute! Erst viel später wurde die Unmöglichkeit bewiesen. Da hätten eigentlich die Alarmglocken schrillen müssen. Aber nein, man war ja so an den alten Trott, die "Grundlagen der Mathematik", gewöhnt, dass man einfach weiterhin glauben musste. Und wenn die Unmnöglichkeit der Aktion bewiesen wird, dann glaubt man eben, dass der liebe Gott schon eine Wohlordnung bereithalten wird. Oder was sollte man unter "ES gibt" sonst verstehen? Aber nein, auch dieser Glaube ist falsch, denn selbst der liebe Gott kann nicht überabzählbar viele Objekte unterscheiden. Es gibt nur abzählbar viele Unterscheidungsmerkmale. Das kann man mathematisch beweisen! --H-Hippasos (Diskussion) 19:16, 15. Okt. 2012 (CEST)Beantworten

Kritik-Abschnitt II

Ich hatte gestern mittag eine Neufassung des Kritikabschnitts zur Diskussion gestellt, die aber in der lebhaften sonstigen Diskussion unterzugehen droht. Der Kritikabschnitt kann aus verschiedenen Gründen nicht so bleiben wie er ist, u.a. weil er nicht vermittelt, worum es in der Sache eigentlich geht (sondern eher den Eindruck einer persönlichen Kontroverse erweckt). Deshalb folgender Vorschlag für eine Neufassung:

Von Mathematikern kritisiert werden Mückenheims Thesen zur Mengenlehre und zum Unendlichen in der Mathematik. Mückenheim vertritt die Ansicht, dass "die Mathematik wie jede andere Wissenschaft gezwungen [sei], mit endlichen Mitteln auszukommen", dass "viele Zahlen, deren Darstellung 10100 verschiedene Ziffern erfordern würde, nicht definiert und deshalb auch nicht verwendet werden [könnten]", dass die "Menge der Ziffern einer Zahl endlich" und irrationale Zahlen keine Zahlen, sondern nur Ideen seien, und dass "schon der Zwischenwertsatz oder der Fundamentalsatz der Algebra" keine uneingeschränkte Gültigkeit hätten, sondern "Ausnahmen leiden".[1][2]

Im Zentralblatt MATH spricht Franz Lemmermeyer in seiner Besprechung zu Mathematik für die ersten Semester von einem "Feldzug gegen die moderne Mathematik".[3]. In seiner Besprechung zu Die Mathematik des Unendlichen bezweifelt derselbe Rezensent die Begriffe, Definitionen und Konzepte, mit denen Mückenheim die Inkosistenz der Cantorschen Mengenlehre und die Inkorrektheit der Überabzählbarkeit der reellen Zahlen bewiesen haben will.[4]

  1. Forschungsbericht 2011 der FH Augsburg S.44ff.
  2. W.Mūckenheim: Phyical Constraints of Numbers
  3. Besprechung zu "Mathematik für die ersten Semester", 2nd rev. ed.
  4. Besprechung zu "Die Mathematik des Unendlichen"

Die wörtlichen Zitate finden sich übrigens genauso im Vorwort von "Mathematik für die ersten Semester", vgl. das Buch bei Google Books. Falls es Widerspruch zur Auswahl der Zitate gibt möge man ihn jetzt artikulieren, andernfalls werde ich den Abschnitt morgen einbauen. --Suhagja (Diskussion) 19:25, 15. Okt. 2012 (CEST)Beantworten

Die Zusammenfassung ist ausgewogener als Ihr ursprünglich geplanter Text. Um meine Ansichten korrekt ausdrücken (falls Sie denn annehmen zu dürfen glauben, dass der Leser sich überhaupt dafür interessiert), sollte aber vor allem der Schluss des Vorwortes meines Buches als Fazit meiner Einstellung wörtlich oder sinngemäß zitiert werden: "Ohne also den Mangel aus unserem Bewusstsein zu verdrängen, können und dürfen wir zur Erkenntnis der Verschiedenheit der Dinge in der Wirklichkeit weiterhin so vorgehen, als gäbe es unendliche Mengen." (Übrigens ist das nur die Durchführung des von A. Robinson aufgezeigten Weges.) Deswegen lehne ich die moderne Mathematik nicht ab, sondern betreibe sie. Denn die moderne Mathematik - ob mit oder ohne Unendlichkeits- und Auswahlaxiom - tut genau dies. Mehr ist nämlich nicht möglich - auch wenn manche das glauben.
Zum zweiten muss der Leser der Lemmermeyerschen Elaborate auf die dort zweifelsfrei vorhandenen Fehler aufmerksam gemacht werden, um sich ein Bild von der Qualität machen zu können, weshalb der Link zu meinem Kommentar als Gegenpart bleiben sollte.
Drittens: Es ist richtig, dass ich früher die irrationalen Zahlen lediglich als Ideen bezeichnet und angesehen habe, weil ich Zahl und Zifferndarstellung identifiziert habe. Ich bin inzwischen zu der Überzeugung gelangt, dass eine Zahl ebensogut durch einen anderen Ausdruck wie eine Formel für eine Folge oder Reihe oder eine Gleichung, welche die Zahl explizit oder implizit enthält, beschrieben werden kann, wenn wir Robinsons Vorschlag folgen, was ich in der Lehre unbedingt tue. Doch wäre es eine Überfrachtung des Artikels, diese komplizierten Zusammenhänge genau erklären zu wollen. --H-Hippasos (Diskussion) 20:26, 15. Okt. 2012 (CEST)Beantworten

Also, sie haben früher die irrationalen Zahlen abgelehnt, tun das heute nicht mehr, lehnen nur Zahlen mit unendlich vielen Ziffern ab. Nun gut.

In einem Erkenntnisprozess, der sich über viele Jahre hinzieht und von vielen überhaupt nicht bewältigt wird, kann ein solcher Meinungswechsel wohl vorkommen. --[WM]]

Ich habe mir gerade das Vorwort ihres Buches auf Amazon angesehen, der zweite Absatz auf Seite VII scheint mir ihre Thesen recht prägnant zusammenzufassen und sagt im Prinzip das, was oben steht (bis auf die Aussage zu den irrationalen Zahlen). Weiter unten im Vorwort schreiben Sie dann, dass "das Problem im folgenden Text gar nicht mehr erwähnt" wird. Statt jetzt darüber zu diskutieren, was Sie meinen und was nicht (ob sie Kreise, Geraden und irrationale Zahlen ablehnen oder nicht), würde ich dann diesen Absatz zitieren, denn der ist ja nun ein kompletter Absatz aus dem Vorwort Ihres Buches, der Ihre Thesen prägnant zusammenfaßt und der jedenfalls nicht aus dem Zusammenhang gerissen ist. (Das waren die obigen Zitate auch nicht, aber jetzt mit dem Zitieren eines kompletten Absatzes wird das vielleicht noch deutlicher.) Formulierungs-Vorschlag:

Von Mathematikern kritisiert werden Mückenheims Thesen zur Mengenlehre und zum Unendlichen in der Mathematik. Mückenheim schreibt im Vorwort seines Buches Mathematik für die ersten Semester: "Mit der Endlichkeit einer jeden Menge ist auch die Menge aller Ziffern einer Zahl endlich. Die meistens stillschweigend angenommene Voraussetzung, dass jede reelle Zahl "beliebig genau" approximierbar sei, gilt nicht uneingeschränkt - die Zahlenachse weist Lücken auf; die Stetigkeitsannahme, der Konvergenzbegriff und andere Grundpfeiler der Infinitesimalrechnung werden problematisch; schon der Zwischenwertsatz oder der Fundamentalsatz der Algebra "leiden Ausnahmen"." Allerdings stellt Mückenheim im Vorwort ebenfalls klar, dass "das Problem im folgenden Text gar nicht mehr erwähnt" wird und er im Buch im weiteren so vorgeht, als gäbe es unendliche Mengen."[1][2][3]

Im Zentralblatt MATH spricht Franz Lemmermeyer in seiner Besprechung zu Mathematik für die ersten Semester von einem "Feldzug gegen die moderne Mathematik".[4]. In seiner Besprechung zu Die Mathematik des Unendlichen bezweifelt derselbe Rezensent die Begriffe, Definitionen und Konzepte, mit denen Mückenheim die Inkosistenz der Cantorschen Mengenlehre und die Inkorrektheit der Überabzählbarkeit der reellen Zahlen bewiesen haben will.[5] Mückenheim weist dies zurück und erklärt, er "bestreite weder die Existenz von irrationalen Zahlen noch die von Geraden, Kreisen usw.", sondern nur die Existenz aktual unendlicher Mengen.[6]

  1. W. Mückenheim: Mathematik für die ersten Semester
  2. Forschungsbericht 2011 der FH Augsburg S.44ff.
  3. W. Mūckenheim: Phyical Constraints of Numbers
  4. Besprechung zu "Mathematik für die ersten Semester", 2nd rev. ed.
  5. Besprechung zu "Die Mathematik des Unendlichen"
  6. Kommentar von Wolfang Mückenheim zur Besprechung von Mathematik für die ersten Semester., abgerufen am 13. Oktober 2012.

Ende Vorschlag.

Auch wenn das eigentlich nicht in die Artikel-Diskussion gehört, will ich noch ein paar Worte zu ihrer Erwiderung auf die Zentralblatt-Rezension sagen.

1. Wer die Existenz aktual unendlicher Mengen bestreitet, der bestreitet auch die Existenz von Geraden, Kreisen und irrationalen Zahlen. Es gibt keine irrationalen Zahlen mit endlich vielen Ziffern.

Aber es gibt irrationale Zahlen ohne Ziffer. Kreise und Geraden sind nicht notwendig als überabzählbare Punktmengen zu verstehen. --[WM]]

2. Ob in Ihrem Buch reelle Zahlen bereits auf Seite 8 eingeführt werden und Funktionen auf Seite 19, das liegt im Auge des Betrachters.

Nein, das tut es nicht. Es sei denn, der Betrachter schließt auf dieser Seite die Augen. --[WM]]

Sie führen auf Seite 8 die Bezeichnung R für die Menge der reellen Zahlen ein und definieren diese als Zahlen mit Dezimaldarstellung. Sie sagen freilich nicht, was eine Dezimaldarstellung ist, ob diese unendlich viele Ziffern haben kann etc.

3. In der Besprechung kritisiert Lemmermeyer, dass die Definition der Stetigkeit auf Seite 199 sich "schon bei oberflachlicher Betrachtung als vollkommen sinnfrei" herausstellt. Sie erwidern darauf, dies sei "Nur bei oberflächlicher Betrachtung!" der Fall. Lemmermeyer hat aber zweifellos recht: sie verlangen auf Seite 199 ausdrücklich, dass die Bedingung nicht nur für x aus dem Definitionsbereich, sondern für alle reellen Zahlen x gelten solle. Sie ergänzen ihre Definition sogar mit einer Anmerkung: "Eine heute weit verbreitete Definition fordert nur, dass für alle (nicht ) [...] was jedoch dem Grundgedanken der Stetigkeit reeller Funktionen zuwiderläuft." Lemmermeyers Kritik ist völlig richtig: wenn x nicht im Definitionsbereich liegt, dann ist f(x) nicht definiert, die Ungleichung (und damit die gesamte Definition) also völlig sinnfrei.

Nur bei oberflächlicher Betrachtung. Wenn f(x) nicht definiert ist, so ist die Ungleichung nicht erfüllt. Oder wollen Sie das Gegenteil behaupten? Bei der Negation spreche ich übrigens nicht von "größer" (>) sondern von "nicht kleiner" mit dem durchstrichenen <-Zeichen. Überlegen Sie einmal, warum ich das wohl tue. --[WM]]
Natürlich kann man definieren, was man will.
Nein, man kann nicht definieren, dass ein undefiniertes f(x) irgendwelche Ungleichungen erfüllt. Zumindest wäre das eine ähnlich unsinnige Definition wie die Behauptung, grundsätzlich ununterscheidbare Objekte besäßen eine Wohlordnung.

Mit Ihrer Definition wäre aber zum Beispiel die auf dem abgeschlossenen Intervall [0,1] definierte Funktion f(x)=x unstetig, was ganz gewiß weder der gängigen Verwendung des Begriffes "Stetigkeit" noch der Anschauung entspricht.--Suhagja (Diskussion) 12:28, 16. Okt. 2012 (CEST)Beantworten

Die auf einem abgeschlossenen Intervall definierte Funktion ist in den Endpunkten unstetig, da es Endpunkte sind. Natürlich könnte man über halbseitige Stetigkeit zu genaueren Aussagen gelangen, aber das wäre für mein Buch einfach überfrachtend geworden. In jedem Falle ist nach der gängigen Definition sogar eine Folge stetig, was Unsinn ist. Jedenfalls hat sich Herr Dr. Lemmermeyer ebenso täuschen lassen wie Sie, nur dass er es bisher nicht zugegeben hat - und Sie auch nur indirekt, indem Sie einen anderen Schauplatz eröffenen, der mit der ersten Beschuldigung überhaupt nichts zu tun hat. --[WM]
Anmerkung: Schon die Ausdrucksweise "stetig im Punkt x" ist irreführend. Ein Punkt hat kein Interieur. Gemeint ist ja "stetig um den Punkt x herum", also in einer Umgebung des Punktes. Und diese Bedingung ist in einem Endpunkt nicht erfüllt, wenn nicht halbseitige Stetigkeit eingeführt wird. --H-Hippasos (Diskussion) 07:43, 17. Okt. 2012 (CEST)Beantworten

4. Der Rest der Erwiderung sind persönliche Anwürfe, die sich wohl auf einen anderen Text beziehen. Jedenfalls kommen die von Ihnen zitierten Sätze "Einige Fragen bleiben. Muss man solche Werke ausfuhrlich besprechen? [...] Und zu guter Letzt eine Frage an den Oldenbourg-Verlag, der dieses Machwerk auf dem Ruckumschlag als “solides Fundament” auch fur “Studierende der Mathematik” anpreist: olet pecunia?" in der im Zentralblatt veröffentlichten Rezension überhaupt nicht vor. --Suhagja (Diskussion) 08:18, 16. Okt. 2012 (CEST)Beantworten

Ich habe lange nicht mehr nachgeschaut. Ursprünglich war der Text dort vorhanden. --[WM]
Ich habe leider zur Zeit aus irgendwelchen Formatierungsgründen keinen Zugriff, bin aber auch nicht besonders interessiert. Falls Sie Ihr Pseudonym zu lüften wagen, kann ich Ihnen die sehr originellen Originale schicken.

--H-Hippasos (Diskussion) 13:45, 16. Okt. 2012 (CEST)Beantworten

Was halten die Wikipedianer von dem unten stehenden Vorschlag? (Meine darunter gesetzte Frage erscheint leider nicht auf dem Bildschirm, deswegen versuche ich es hier noch einmal).--WM --H-Hippasos (Diskussion) 07:43, 19. Okt. 2012 (CEST)Beantworten

Neufassung

1) Mir scheint, dass einige Fakten aus dem Kritik-Abschnitt zu Forschung und Lehre gehören.

Wolfgang Mückenheim konnte unterhalb der Erzeugungsschwelle für Elektron-Positron-Paare erstmals rein dispersive Delbrück-Streuung nachweisen.[1] [2]. Unter seinen zahlreichen theoretischen Publikationen fand die Erweiterung des Wahrscheinlichkeitsbegriffs für eine formale Lösung der Nichtlokalitätsprobleme der relativistischen Quantenmechanik [3] besondere Beachtung [4] Er ist Autor mehrerer Bücher sowie einer Anthologie von 1111 Essays, die unter dem Titel Das Kalenderblatt [5] im Google-Forum de.sci.mathematik von 2009 bis 2012 täglich erschienen sind. Darin setzt er sich überwiegend kritisch mit der transfiniten Mengenlehre auseinander. Sein Lehrbuch Mathematik für die ersten Semester, in dem die Existenz unendlicher Mengen ausgeschlossen wird, avancierte zum Bestseller[6] der Sparte Mathematik des Münchner R. Oldenbourg Verlags. Darin zeigt er auf, dass Zahlen, deren Komplexität die eines Systems übertrifft, in diesem System nicht kommuniziert werden können. Mückenheim schreibt im Vorwort: „Das Universum mit seinen 1080 Protonen und erst recht jeder zum Denken und Rechnen nutzbare Teilbereich besitzen eine endliche Informationsspeicherkapazität. Mit der Endlichkeit einer jeden Menge ist auch die Menge aller Ziffern einer Zahl endlich. Die meistens stillschweigend angenommene Voraussetzung, dass jede reelle Zahl ‚beliebig genau‘ approximierbar sei, gilt nicht uneingeschränkt – die Zahlenachse weist Lücken auf; die Stetigkeitsannahme, der Konvergenzbegriff und andere Grundpfeiler der Infinitesimalrechnung werden problematisch; schon der Zwischenwertsatz oder der Fundamentalsatz der Algebra ‚leiden Ausnahmen‘.“Allerdings stellt Mückenheim im Vorwort in Anlehnung an Robinson ebenfalls klar, dass wir in der Mathematik weiterhin so vorgehen dürfen, als gäbe es unendliche Mengen. [7][8][9]


2) Im Abschnitt Kritik ist die allquantisierende Wendung "Mathematiker bezweifeln" verfehlt. Es gibt auch einige Mathematiker, die das Unendliche kritisch hinterfragen, wenn auch die "working mathematicians" des Mainstreams in der Regel darüber nicht informiert sind. Einige Beispiel finden sich hier: http://www.hs-augsburg.de/~mueckenh/GU/GU11.PPT#373,53,Folie 53 und auf den folgenden Folien. Die Liste der Skeptiker des Infiniten könnte noch stark erweitert werden. Zahlreiche Belege dafür sind in den Kalenderblättern angegeben. Deswegen ist der Abschnitt Kritik den Tatsachen entsprechend genauer folgendermaßen zu formulieren:

Viele Mathematiker lehnen Mückenheims Thesen zur Mengenlehre und zum Unendlichen in der Mathematik ab. In seiner Besprechung zu Die Mathematik des Unendlichen im Zentralblatt MATH bezweifelt Franz Lemmermeyer die Begriffe, Definitionen und Konzepte, mit denen Mückenheim die Inkonsistenz der Cantorschen Mengenlehre und die Inkorrektheit der Überabzählbarkeit der reellen Zahlen bewiesen haben will.[10] In einer Besprechung desselben Rezensenten zu Mathematik für die ersten Semester heißt es, der Autor führe in dem Werk „seinen Feldzug gegen die moderne Mathematik“ fort und bestreite die Existenz von Geraden, Kreisen und irrationalen Zahlen. [11] Mückenheim weist diese Kritik scharf von sich und wirft dem Autor der Rezension schwere handwerkliche und sachliche Fehler vor. [12] Anders als von Lemmermeyer dargestellt bezögen sich seine Einwände nicht auf die moderne Mathematik - Geraden und Kreise existierten ebenso wie irrationale Zahlen -, sondern lediglich auf die aktuale oder vollendete Unendlichkeit, die Cantor aus der Existenz Gottes abgeleitet zu haben glaubte und die später von Zermelo als Axiom übernommen wurde.

Wolfgang Mückenheim
  1. Dissertation (1979)
  2. W. Mückenheim, M. Schumacher: J. Phys. G: Nucl. Phys. 6 (1980) 1237
  3. W. Mückenheim et al.: A Review of Extended Probabilities, Phys. Rep. 133 (1986) 337
  4. J. Maddox: Can Chance be less than zero? Nature 320 (1986) 481
  5. Das Kalenderblatt
  6. Oldenbourg-Verlag: Katalog für Mathematik, Informatik, Naturwissenschaften, Technik. Herbst 2012
  7. W. Mückenheim: Mathematik für die ersten Semester.
  8. Forschungsbericht 2011 der FH Augsburg S.44ff.
  9. W. Mūckenheim: Phyical Constraints of Numbers (2005)
  10. Besprechung zu Die Mathematik des Unendlichen.
  11. Besprechung zu Mathematik für die ersten Semester. 2nd rev. ed.
  12. Kommentar von Wolfgang Mückenheim zur Besprechung von Mathematik für die ersten Semester., abgerufen am 13. Oktober 2012.
(CEST)

Was halten die Wikipedianer von diesem Vorschlag? -- Wolfgang Mückenheim

* Die Bedeutung der physikalischen Arbeiten sollen die Physiker beurteilen. Dass die Arbeit nach Erscheinen 1986 in "Nature" einmal unter "News and Views" (das ist wohl so etwas wie die Meinungsseite bei Nature?) erwähnt wurde belegt m.E. noch nicht die ausreichende Relevanz für einen Wikipedia-Eintrag (erst recht nicht für die Formulierung "fand besondere Beachtung"), dazu bräuchte es wohl eher eine Erwähnung in einem Standard-Lehrbuch der Quantenmechanik. Aber dazu sollten sich die Physiker äußern.
* "Autor mehrerer Bücher sowie einer Anthologie von 1111 Essays, die unter dem Titel Das Kalenderblatt im Google-Forum de.sci.mathematik von 2009 bis 2012 täglich erschienen sind." Einträge in einem Google-Forum, selbst wenn es mehr als Tausend sind, sind noch keine Veröffentlichung und insofern nicht Wikipedia-relevant.
* "Darin zeigt er auf, dass Zahlen, deren Komplexität die eines Systems übertrifft, in diesem System nicht kommuniziert werden können." Das trifft schlicht nicht zu, jedenfalls habe ich den entsprechenden Abschnitt im Buch nicht gefunden. Das Buch ist einfach ein normales Lehrbuch der Analysis, unkonventionelle Ansichten kommen kaum im Buch, sondern vor allem im Vorwort zur Sprache.
* Das Zitat aus dem Vorwort ist einfach nur eine längere Fassung des Zitats, das bereits jetzt im Artikel steht. Ich denke, wir sollten den Artikel nicht unnötig aufblähen. Es versteht auch anhand der kürzeren Fassung jeder, worum es inhaltlich geht.
* Das selbe gilt für die Zentralblattrezensionen und die Erwiderung des Autors darauf, die bereits in der jetzigen Fassung relativ viel Platz einnehmen und nicht noch ausführlicher ausgeführt werden sollten.
* "die Cantor aus der Existenz Gottes abgeleitet zu haben glaubte und die später von Zermelo als Axiom übernommen wurde." Mal abgesehen davon, dass viele Mathematikhistoriker dieser Behauptung wohl auch inhaltlich widersprechen würden (siehe Euklids Beweis der Unendlichkeit der Menge der Primzahlen) gehört das wohl nicht in den Artikel zu Wolfgang Mückenheim, sondern allenfalls in den zu Cantor oder Zermelo.
* Grundsätzlich möchte ich darauf hinweisen, dass es nicht Zweck eines Wikipedia-Artikels ist, eine Debatte zu führen, sondern darauf hinzuweisen, dass es diese Debatte gibt und Verweise zur Literatur zu geben. Das ist in der jetzigen Fassung der Fall. Wir waren dem Autor jetzt schon recht weit entgegengekommen, indem wir einen unveröffentlichten Text auf seiner Webseite als quasi gleichwertig mit einer offiziellen Veröffentlichung behandelt und hier in den Artikel einzubauen (und zu verlinken) um auf diese Weise beide Seiten der Debatte zu Wort kommen zu lassen. Der Artikel in seiner jetzigen Form macht (in groben Zügen) klar, worum es geht, warum manche Leute diese Auffassungen kritisieren und warum der Autor diese Kritik zurückweist. Es kann aber nicht Sinn des Artikels sein, nun auch noch alle einzelnen Argumente beider Seiten aufzulisten. Dafür gibt es die verlinkten Literaturquellen, die interessierte Leser anklicken können. Nebenbei bemerkt finde ich auch, dass der Artikel in seiner jetzigen Form gewiß nicht unausgewogen ist, sondern den Ansichten des Autors relativ viel Platz eingeräumt wird.
* Der einzige Punkt, in dem ich zustimmen würde: die Formulierung "Mathematiker kritisieren" ist wohl zu allgemein und sollte ersetzt werden. --Suhagja (Diskussion) 15:32, 19. Okt. 2012 (CEST)Beantworten

Und bitte, falls Sie irgendwelche Anmerkungen haben, schreiben Sie diese bitte unter diesen Kommentar und nicht in den Text zwischen die einzelnen Absätze!--Suhagja (Diskussion) 15:32, 19. Okt. 2012 (CEST)Beantworten

Vorab: Danke für Ihr Interesse! Die folgenden Zeilen sind nicht beleidigend gemeint, doch kann ich nicht umhin, Fakten anzusprechen.
Sie schreiben: "Die Bedeutung der physikalischen Arbeiten sollen die Physiker beurteilen."

Wieso? Die Bedeutung der mathematischen Teile können Mathematiker wie Sie doch auch nicht beurteilen! Zur Erinnerung, Sie schrieben wahrheitswidrig:

1) In einer Neuauflage des Buches wurden seine diesbezüglichen Thesen allerdings vom Verlag aus dem Buch gestrichen.
2) In einer Neuauflage des Buches kommen seine diesbezüglichen Thesen allerdings nur noch im Vorwort vor.
3) Ohne unendliche Mengen gibt es auch keine irrationalen Zahlen.
4) Lemmermeyers Kritik ist völlig richtig: wenn x nicht im Definitionsbereich liegt, dann ist f(x) nicht definiert, die Ungleichung ... (und damit die gesamte Definition) also völlig sinnfrei.
5) "Darin zeigt er auf, dass Zahlen, deren Komplexität die eines Systems übertrifft, in diesem System nicht kommuniziert werden können." Das trifft schlicht nicht zu, jedenfalls habe ich den entsprechenden Abschnitt im Buch nicht gefunden.
6) "die Cantor aus der Existenz Gottes abgeleitet zu haben glaubte und die später von Zermelo als Axiom übernommen wurde." Mal abgesehen davon, dass viele Mathematikhistoriker dieser Behauptung wohl auch inhaltlich widersprechen würden (siehe Euklids Beweis der Unendlichkeit der Menge der Primzahlen) gehört das wohl nicht in den Artikel zu Wolfgang Mückenheim, sondern allenfalls in den zu Cantor oder Zermelo.
1) und 2) sind falsch. Jeder Leser kann sich selbst darüber informieren.
3) ist offensichtlich falsch, wie zum Beispiel Feferman bewiesen hat: In his concluding chapters, Feferman uses tools from the special part of logic called proof theory to explain how the vast part if not all of scientifically applicable mathematics can be justified on the basis of purely arithmetical principles. At least to that extent, the question raised in two of the essays of the volume, "Is Cantor Necessary?", is answered with a resounding "no". [S. Feferman, loc. cit, description from the jacket flap]

http://math.stanford.edu/~feferman/book98.html

Dass Cantors vollendete Unendlichkeit nichts, aber auch gar nicht mit der potentiellen Unendlichkeit, die wir bei Euklid finden, zu tun hat, wird Ihnen vielleicht auf ewig unverständlich bleiben (Indoktrinierung durch fehlinformierte oder gewissenlose Mengenlehrer im Studium), ist deswegen aber dennoch so. Zum Beispiel sagt Hilbert, den Sie bestimmt kennen (wenn auch nicht seine folgende Aussage): Will man in Kürze die neue Auffassung des Unendlichen, der Cantor Eingang verschafft hat, charakterisieren, so könnte man wohl sagen: in der Analysis haben wir es nur mit dem Unendlichkleinen und dem Unendlichengroßen aIs Limesbegriff, als etwas Werdendem, Entstehendem, Erzeugtem, d. h., wie man sagt, mit dem /potentiellen Unendlichen/ zu tun. Aber das eigentlich Unendliche selbst ist dies nicht. Dieses haben wir z. B., wenn wir die Gesamtheit der Zahlen 1, 2, 3, 4, . . . selbst als eine fertige Einheit betrachten oder die Punkte einer Strecke als eine Gesamtheit von Dingen ansehen, die fertig vorliegt. Diese Art des Unendlichen wird als /aktual unendlich/ bezeichnet.

[D. Hilbert: "Über das Unendliche", Math. Annalen 95 (1926) p.167] http://gdz.sub.uni-goettingen.de/dms/load/img/?IDDOC=26816 Ic Hätten Sie meine Kalenderblätter gelesen, so wüssten Sie über die mathematischen Grundlagen Bescheid.

4) Behaupten Sie immer noch, meine Stetigkeitsdefinition sei sinnfrei?
5) Lesen Sie das Vorwort meines Buches einschließlich der einzigen dort vorhandenen Fußnote. Oder versuchen Sie mit einem handelsüblichen Taschenrechner, eine Zahl mit 11 verschiedenen Stellen anzugeben.
6) Das ist tatsächlich wenig bekannt. Selbstverständlich sind auch hier die Leser des Kalenderblattes im Vorteil:

Ich hege keinerlei Zweifel an der Wahrheit des Transfinitum, das ich mit Gottes Hilfe erkannt habe und nach seiner Mannigfaltigkeit und Einheit seit mehr als zwanzig Jahren studire [G. Cantor an Pater I. Jeiler, Pfingsten 1888]

Als Beispiel führe ich die Gesamtheit, den Inbegriff aller endlichen ganzen positiven Zahlen an; diese Menge ist ein Ding für sich und bildet, ganz abgesehen von der natürlichen Folge der dazu gehörigen Zahlen, ein in allen Teilen festes, bestimmtes Quantum, ein aphorismenon, das offenbar größer zu nennen ist als jede endliche Anzahl. [...] Man vgl. die hiermit übereinstimmende Auffassung der ganzen Zahlenreihe als aktual-unendliches Quantum bei S. Augustin (De civitate Dei. lib. XII, cap. 19): Contra eos, qui dicunt ea, quae infinita sunt, nec Dei posse scientia comprehendi. [GEORG CANTOR, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor - Dedekind Herausgegeben von ERNST ZERMELO Nebst einem Lebenslauf Cantors von ADOLF FRAENKEL, 1966 GEORG OLMS VERLAGSBUCHHANDLUNG HILDESHEIM, p. 401f.]

Jedenfalls ist Cantors Berufung auf Gott ein Beweis für die Unwissenschaftlichkeit seiner Theorie, was für meine Einstellung von großer Bedeutung ist und deshalb erwähnt werden sollte.

Zusammenfassung der obigen Punkte: Es zeigt sich ganz offensichtlich, dass "Mathematiker" ohne zusätzliche Qualifikation nicht in der Lage (oder vielleicht auch nur nicht willens) sind, den Wikipedia-Artikel über mich objektiv und korrekt zu beurteilen.

Zur Relevanz der erweiterten Wahrscheinlichkeit: Sie ergibt sich aus der Zahl der Zitationen und dem Umstand, dass die zitierte Besprechung nicht auf irgendeiner Meinungseite erfolget, sondern vom Chefredakteur von Nature persönlich stammt.

Und wenn Sie unbedingt Buchzitationen sehen möchten, dann schauen Sie hier nach: http://scholar.google.de/scholar?hl=de&lr=&cites=17483868190043638316&um=1&ie=UTF-8&sa=X&ei=BpqBUIbpA8bMsgbQpIHQAQ&ved=0CCwQzgIwAA wo auch zahlreiche Bücher aufgelistet werden.

Zur Neufassung des Artikels: Offensichtlich hatten Sie viele Fakten meiner Lehre in den Kritik-Absatz verschoben, was einfach unpassend ist.

Sie schreiben: "Das Zitat aus dem Vorwort ist einfach nur eine längere Fassung des Zitats, das bereits jetzt im Artikel steht."

Falsch. Das Zitat beginnt mit der Erklärung der Fakten. Die Detailzitate zu den Folgen wurden von Ihnen, natürlich so, dass der Leser über die Ursachen im Dunkel gelassen wird, eingestellt: "Die meistens stillschweigend angenommene Voraussetzung, dass jede reelle Zahl ‚beliebig genau‘ approximierbar sei, gilt nicht uneingeschränkt – die Zahlenachse weist Lücken auf; die Stetigkeitsannahme, der Konvergenzbegriff und andere Grundpfeiler der Infinitesimalrechnung werden problematisch; schon der Zwischenwertsatz oder der Fundamentalsatz der Algebra ‚leiden Ausnahmen"

Sie mögen verschwinden.

Sie schreiben weiter: "Dasselbe gilt für die Zentralblattrezensionen und die Erwiderung des Autors darauf, die bereits in der jetzigen Fassung relativ viel Platz einnehmen und nicht noch ausführlicher ausgeführt werden sollten."

Hier wird auch nicht aufgebläht, sondern lediglich in die richtige zeitliche Reihenfolge gebracht.

Sie schreiben weiter: "Wir waren dem Autor jetzt schon recht weit entgegengekommen, indem wir einen unveröffentlichten Text auf seiner Webseite als quasi gleichwertig mit einer offiziellen Veröffentlichung behandelt"

Wie ich bereits erklärt habe, wurde der "offizielle Artikel" von einem Verleumder verfasst und mit Hilfe eines Komplizen dem Zentralblatt untergeschoben. Wie Sie inzwischen wohl an den Fakten, zum Beispiel zur Stetigkeit gesehen haben dürften, ist der "offizielle Artikel" einfach wahrheitswidrig.

Sie schreiben: "Der einzige Punkt, in dem ich zustimmen würde: die Formulierung "Mathematiker kritisieren" ist wohl zu allgemein und sollte ersetzt werden."

Ich habe kein Problem damit, dass die meisten Mathematiker, deren Kenntnisstand sich auf dem Ihrigen bewegt, meine Thesen ablehnen. Aber dass die von mir vertretenen Thesen nicht in die Kritik gehören, sollte Ihnen doch auch einleuchten? WM --H-Hippasos (Diskussion) 19:56, 19. Okt. 2012 (CEST)Beantworten

Zum letzten Punkt: das ist an sich schon richtig, nur wäre eine Darstellung der Kritik für den Leser unverständlich, wenn nicht auch vorher dargestellt wird, worum es geht. Ich denke, wir sind ihnen jetzt schon sehr weit entgegengekommen, indem wir neben dem Zitat aus dem Buchvorwort auch noch ihre (in keiner offiziellen Quelle veröffentlichte) Antwort auf die Zentralblatt-Rezensionen in den Artikel eingearbeitet haben und ich finde es ziemlich unverschämt, dass sie jetzt versuchen, den inzwischen ohnehin schon sehr schmeichelhaften Artikel jetzt noch immer weiter zu verändern. Es steht ihnen natürlich frei, diese Diskussion hier immer weiter fortzusetzen, sie könne auch gerne auf den Diskussionsseiten der Themenportale zur Mathematik und Physik ihre Anliegen vorbringen, aber aus meiner Sicht ist jedenfalls alles gesagt. Nebenbei bemerkt war ich von Anfang an für die Löschung des Artikels gewesen. --Suhagja (Diskussion) 21:48, 19. Okt. 2012 (CEST)Beantworten
Das brauchen Sie nicht besonders hervorzuheben. Dazu habe ich in obigenen sechs Punkten wohl in aller Ausführlichkeit dargelegt, dass Ihre Ablehnung in erster Linie auf Unkenntnis der Fakten beruht. Oder wollen Sie Feferman und Hilbert mit derselben Schnoddrigkeit kritisieren, die Sie hier an den Tag gelegt haben? Selbstverständnlich ist Ihre Behauptung (und die von Herrn Dr. Lemmermeyer), ohne Cantors Unendlichkeit sei keine Mathematik möglich, ja seien keine irrationalen Zahlen möglich, falsch. Und Sie widersprechen dem ja auch nicht. Dass Sie mir in irgendeiner Weise entgegengekommen sind, ist erstens falsch und wäre zweitens unangemessen. Die Wikipedia sollte als Enzyklopedie Fakten darstellen und kein Kuhhandel sein. Und wenn ein renommierter Verlag meint, die Rezeption meiner Erweiterten Wahrscheinlichkeiten auf die genannte Weise hervorheben zu sollen, dann ist es nicht an Ihnen, darüber richten zu wollen. Solche Korrekturen sollten sich auf Fälle beschränken, in denen die Aussage ersichtlich falsifizierbar ist, wie zum Beispiel im Falle der Rezensionen von Herrn Dr. Lemmermeyer.
Sie schreiben: "Zum letzten Punkt: das ist an sich schon richtig, nur wäre eine Darstellung der Kritik für den Leser unverständlich, wenn nicht auch vorher dargestellt wird, worum es geht." Wenn die Wikipedia diese Details wirklich enthalten soll (was ich zwar begrüße, aber als übertrieben ansehe), dann trifft doch mein erster Vorschlag genau das Ziel. Lediglich die Darstellung dessen, worum es geht, steht im zweiten Abschnitt, wie es sich gehört. Im gegenwärtigen Zustand dagegen, kann der Leser in der Kritik zwar lesen, welche Auswirkungen unter Nichtbeachtung der Robinsonschen Empfehlung eintreten, aber nicht, was deren Ursache ist. Sie erscheinen als völlig willkürliche und unausweichliche Folgen einer albernen Idee. Das gefällt Ihnen vermutlich, aber es verzerrt die Tatsachen. Eine ausgewogene Darstellung ohne überbordende Details findet sich in meiner unten vorgeschlagenen Kurzfassung.
Die Diskussion über meine Arbeiten zum Unendlichen sollte jedenfalls auf der Basis von Kenntnissen über das Unendliche geführt werden. Die besitzt man nicht automatisch nach einem Mathematikstudium - auch nicht als "professioneller Mathematiker". Also widerlegen Sie bitte die sechs von mir angesprochenen Kritikpunkte, oder geben Sie zu, meinetwegen durch Schweigen, dass Ihre Meinungsäußerungen dazu übereilt und unzutreffend und damit irrelevant waren.

WM --H-Hippasos (Diskussion) 22:54, 19. Okt. 2012 (CEST)Beantworten

Kurze Neufassung

Teil 2 und 3 zusammengefügt:

Wolfgang Mückenheim konnte unterhalb der Erzeugungsschwelle für Elektron-Positron-Paare erstmals rein dispersive Delbrück-Streuung nachweisen.[1] [2]. Unter seinen zahlreichen theoretischen Publikationen fand die Erweiterung des Wahrscheinlichkeitsbegriffs für eine formale Lösung der Nichtlokalitätsprobleme der relativistischen Quantenmechanik [3] besondere Beachtung [4] Er ist Autor mehrerer Bücher sowie einer Anthologie von 1111 Essays, die unter dem Titel Das Kalenderblatt [5] im Google-Forum de.sci.mathematik von 2009 bis 2012 täglich erschienen sind. Darin setzt er sich überwiegend kritisch mit der transfiniten Mengenlehre auseinander. Sein Lehrbuch Mathematik für die ersten Semester, in dem die Existenz unendlicher Mengen ausgeschlossen wird, avancierte zum Bestseller[6] der Sparte Mathematik des Münchner R. Oldenbourg Verlags.

Viele Mathematiker lehnen Mückenheims Thesen zur Mengenlehre und zum Unendlichen in der Mathematik ab. In seiner Besprechung zu Die Mathematik des Unendlichen im Zentralblatt MATH bezweifelt Franz Lemmermeyer die Begriffe, Definitionen und Konzepte, mit denen Mückenheim die Inkonsistenz der Cantorschen Mengenlehre und die Inkorrektheit der Überabzählbarkeit der reellen Zahlen bewiesen haben will.[7] In einer Besprechung desselben Rezensenten zu Mathematik für die ersten Semester heißt es, der Autor führe in dem Werk „seinen Feldzug gegen die moderne Mathematik“ fort und bestreite die Existenz von Geraden, Kreisen und irrationalen Zahlen. [8] Mückenheim weist diese Kritik scharf von sich und wirft dem Autor der Rezension schwere handwerkliche und sachliche Fehler vor. [9] Anders als von Lemmermeyer dargestellt bezögen sich seine Einwände nicht auf die moderne Mathematik - Geraden und Kreise existierten ebenso wie irrationale Zahlen -, sondern lediglich auf die aktuale oder vollendete Unendlichkeit, die Cantor aus der Existenz Gottes abgeleitet zu haben glaubte und die später von Zermelo als Axiom übernommen wurde.

<references>

  1. Dissertation (1979)
  2. W. Mückenheim, M. Schumacher: J. Phys. G: Nucl. Phys. 6 (1980) 1237
  3. W. Mückenheim et al.: A Review of Extended Probabilities, Phys. Rep. 133 (1986) 337
  4. J. Maddox: Can Chance be less than zero? Nature 320 (1986) 481
  5. Das Kalenderblatt
  6. Oldenbourg-Verlag: Katalog für Mathematik, Informatik, Naturwissenschaften, Technik. Herbst 2012
  7. Besprechung zu Die Mathematik des Unendlichen.
  8. Besprechung zu Mathematik für die ersten Semester. 2nd rev. ed.
  9. Kommentar von Wolfgang Mückenheim zur Besprechung von Mathematik für die ersten Semester., abgerufen am 13. Oktober 2012.

WM --~~~~