Lidar
Lidar steht für "light detection and ranging" und ist eine dem Radar ("radiowave detection and ranging") sehr verwandte Methode zur Fernmessung atmosphärischer Parameter. Lidar-Systeme senden Laserpulse aus und detektieren das aus der Atmosphäre zurückgestreute Licht. Aus der Laufzeit der Signale und der Lichtgeschwindigkeit wird die Entfernung zum Ort der Streuung berechnet. Wolken- und Staubteilchen in der Luft (letztere werden Aerosole genannt) streuen das Laserlicht stark zurück. Eine einfache Anwendung von Lidar ist daher die hochauflösende Detektion und Entfernungsmessung von Wolken und Aerosolschichten. Mit komplizierteren Systemen lassen sich atmosphärische Zustandsparameter und die Konzentration von atmosphärischen Spurengasen bestimmen. Beispielsweise dienen Lidar-Instrumente auch der Überwachung von Emissionsmengen von Schornsteinen von Fabriken auf Einhaltung vorgegebener Grenzwerte.
Je nach Wellenlänge des verwendeten Laserlichts sind Lidarsysteme mehr oder weniger empfindlich für molekulare oder Partikelrückstreuung. Die erwartete Rückstreuung von Molekülen, die Rayleigh-Streuung, folgt einer -Abhängigkeit; dies erklärt, warum der Himmel blau erscheint (Siehe auch: Rayleigh-Streuung in Artikel Streuung (Physik)). Auch hängt die Stärke der Rückstreuung bei einer Wellenlänge von der jeweiligen Partikelgröße und Konzentration ab. Mit Lidarsystemen, die mehrere Wellenlängen aussenden, kann daher die genaue Größenverteilung der atmosphärischen Partikel bestimmt werden.
Mit ausgefeilten Techniken lässt sich mittels Lidar eine Vielzahl atmosphärischer Parameter messen: Druck, Temperatur, Feuchte, H2O-Dampfkonzentration sowie die Konzentration atmosphärischer Spurengase (Ozon, Stickoxide, Schwefeldioxid, Methan usw.). Außerdem lassen sich die optischen Eigenschaften von Aerosolen und Wolkenpartikeln bestimmen (Extinktionskoeffizient, Rückstreuungskoeffizient, Depolarisation). Mit einem Depolarisations-Lidar lässt sich der Aggregatzustand (flüssig oder fest, also bei Wolkenteilchen: ob noch Wasser oder schon Eis) bestimmen (siehe auch Polarisation).
Raman-Lidar-Systeme (siehe auch Ramanspektroskopie) detektieren zusätzlich zur Rückstreuung der gerade ausgesendeten Wellenlänge (elastische Rückstreuung) auch Signale bei anderen Wellenlängen. Diese Signale entstehen dadurch, dass die das Licht rückstreuenden Moleküle einen Teil der Energie des Lichtteilchens (des Photons) aufnehmen oder ihm zusätzliche Energie hinzugeben (inelastische Streuung). Die Moleküle ändern bei der inelastischen Streuung ihre Vibration oder Rotation (Raman-Prozess). Die Energieänderung ist nur in bestimmten "gestuften" Schritten möglich (Quantenmechanik) und diese Schritte sind charakteristisch für die Molekülart. Wassermoleküle streuen beispielsweise grünes Licht mit kleiner Wahrscheinlichkeit rot zurück (frequenzverdoppeltes Nd:YAG-Laserlicht einer Wellenlänge von 532 nm wird bei 660 nm zurückgestreut). Dieser Prozess wird verwendet bei der Bestimmung des Wasserdampfmischungsverhältnisses in der Atmosphäre (Wasserdampf-Raman-Lidar).
Spurengaskonzentrationen können auch - und bei den meisten Stoffen genauer - mit der Methode des differentiellen Absorptions-Lidars (DIAL - differential absorption lidar) gemessen werden. Bei dieser Technik werden zwei Laserpulse unterschiedlicher Wellenlänge ausgesendet. Eine der Wellenlängen wird so gewählt, dass sie vom Stoff, dessen Konzentration bestimmt werden soll, absorbiert wird (On-Line-Wellenlänge); die andere Wellenlänge so, dass sie nicht oder möglichst wenig absorbiert wird (Off-Line-Wellenlänge). Aus dem schrittweisen Vergleich der Rückstreusignale (jeweils für "On" und "Off") kann dann das Konzentrationsprofil des Stoffes entlang der Ausbreitungslinie der Laserpulse berechnet werden. Absorptionskoeffizienten sind in der Regel aus Laborexperimenten gut bekannt; DIAL bestimmt mittels der entsprechenden Werte für On- und Off-Wellenlänge die atmosphärische Spurengaskonzentration, ohne dass eine weitere Kalibrierung des Instrumentes erforderlich wäre (die Technik ist "selbstkalibrierend"). Dafür müssen allerdings die Wellenlängen der Laserpulse sehr genau eingestellt bzw. kontrolliert werden. Da die Absorptionskoeffizienten meist von Druck und Temperatur abhängen, müssen diese entlang der Messstrecke genau bekannt sein. Vor allem bei der Vertikalsondierung der Atmosphäre spielt dieser Umstand eine große Rolle. Ebenso muss berücksichtigt werden, dass das Rückstreulicht (Rayleigh-Streuung) eine temperaturabhängige Dopplerverbreiterung erfährt. Dieser Effekt tritt jedoch nicht bei der Rückstreuung an Partikeln (Aerosolen) auf. Daher müssen auch Informationen über das Verhältnis von Rayleigh-Streuung und Rückstreuung an Partikeln eingeholt werden.