Zum Inhalt springen

Photogrammetrie

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 19. Oktober 2005 um 13:46 Uhr durch 129.132.26.40 (Diskussion) (Fachverbände). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Photo- bzw. Fotogrammetrie bedeutet übersetzt „Bildmessung“ und ist eine Sammlung von Methoden, um aus Fotografien eines Objektes seine räumliche Lage bzw. dreidimensionale Form zu rekonstruieren. Darum wird die Photogrammetrie auch als passives Fernerkundungs- und Vermessungsverfahren bezeichnet, da sie die berührungslose Rekonstruktion von räumlichen Objekten aus ihrer fotografisch festgehaltenen reflektierten oder emittierten Strahlung ermöglicht.

Methoden

Überblick

Datei:PhotogrammetriePrinzip Wiora.png
Datenmodell der Photogrammetrie nach [Wiora].

Die nebenstehende Abbildung gibt einen Überblick über die Methoden der Photogrammetrie. Sie zeigt sie aus der Sicht der Eingangs- und Ausgangsgrößen.

Die 3D-Koordinaten sind die Ortskoordinaten von Objektpunkten im dreidimensionalen Raum. Die Bildkoordinaten geben den Ort der Abbildung der Objektpunkte auf den Film oder einen elektronischen Bildwandler an. Die äußere Orientierung einer Kamera bezeichnet ihren Standort im Raum sowie ihre Blickrichtung. Die innere Orientierung definiert die abbildungsrelevanten Parameter der Kamera. Das ist in erster Linie die Brennweite des Objektivs, es gehört aber auch die Beschreibung der Linsenverzerrungen dazu. Des Weiteren spielen die zusätzlichen Beobachtungen eine wichtige Rolle. Durch Maßstäbe, also den bekannten räumlichen Abstand zweier Punkte, oder Passpunkte, also die bekannten 3D-Koordinaten von Punkten in der Örtlichkeit (Objektpunkten), erfolgt die Anbindung an definierte Längeneinheiten und Koordinatensysteme.

Jede der vier Hauptgrößen kann als Voraussetzung oder als Ergebnis einer photogrammetrischen Methode betrachtet werden. Die einzelnen Methoden werden in den folgenden Abschnitten erläutert.

Grundlagen

Das Ziel einer photogrammetrischen Auswertung ist die Wiederherstellung der räumlichen Lage von Bildern untereinander, in der sie sich zum Zeitpunkt der Aufnahme befunden haben. Diese Wiederherstellung erfolgt nach den Gesetzen der Zentralprojektion unter Einhaltung der Komplanaritätsbedingung. Grundsätzlich kann man diese Berechnung in einem Guss im Zuge einer gemeinsamen Ausgleichung durchführen, verfahrenstechnisch zerfällt dieser Rechenvorgang jedoch in mehrere getrennte Schritte, die je nach der gegebenen Messungssituation untereinander kombiniert werden:

  • Innere Orientierung: Um innerhalb eines Bildes messen zu können muss bekannt sein, wo sich der Bildmittelpunkt, der sog. Bildhauptpunkt, befindet. Dieser Punkt wird durch den Strahl gebildet, der senkrecht auf der Objektivebene stehend durch den Brennpunkt in das Bild verläuft. Dieser Punkt, und hinzukommend auch noch die Kammerkonstante (vulgo Brennweite) und die Objektivverzeichnung, wird messtechnisch ermittelt und erlaubt die Transformation eines gemessenen Punktes in das Bildkoordinatensystem .
  • Relative Orientierung: Wiederherstellung der relativen Lage zweier Bilder im Raum zueinander und Berechnung eines sogenannten Modells. Aus den Koordinaten der beiden Bilder und werden die Modellkoordinaten berechnet. In der Praxis lassen sich so zahlreiche Bilder, zum Beispiel aus einer Befliegung, zu einem Modellverbund zusammenrechnen.
  • Äussere Orientierung: Im Gegensatz zur relativen Orientierung, bei der nur eine gegenseitige Wiederherstellung der Raumlage zweier Bilder erfolgt, erlaubt die äussere Orientierung die räumlich eindeutige Rekonstruktion der Bildlage bei der Aufnahme. Voraussetzung dazu ist allerdings, dass man über im Bild sichtbare Passpunkte in der Örtlichkeit verfügt, auf die man die Bildkoordinaten im Zuge eines räumlichen Rückwärtsschnittes iterativ einrechnet.
  • Absolute Orientierung: Der Modellverbund aus der relativen Orientierung entspricht bereits der Geometrie der Punkte in der Örtlichkeit, allerdings stimmt die räumliche Orientierung des Modellverbundes noch nicht mit der Örtlichkeit überein und der Maßstab ist noch unbekannt. Im Zuge einer dreidimensionalen Helmerttransformation werden die Modellkoordinaten des Modellverbundes auf die bekannten Passpunkte in der Örtlichkeit transformiert. Die Helmerttransformation passt die Punkte so in das bestehende Punktfeld ein, dass die Restklaffungen in den Koordinaten minimal werden. Bei Verwendung einer Restfehlerinterpolation lassen sich auch diese Klaffungen beseitigen.

Früher erfolgte die Auswertung zweier Luftbilder in Luftbildauswertegeräten, die die relative und absolute Orientierung durch physische Wiederherstellung der Strahlenbündel erreichte. Heute erfolgt die Auswertung in der Regel in Komparatoren, in denen Bildkoordinaten direkt gemessen werden. Die weiteren Arbeitsschritte sind dann Verfahrensgänge der numerischen Photogrammetrie, wobei Modellblock- und Bündelblockausgleichungsverfahren zum Einsatz kommen.

Zentralprojektion

Bei bekannter innerer und äußerer Orientierung und bekannten 3D-Koordinaten der Objektpunkte lassen sich daraus deren Bildkoordinaten berechnen. Das entspricht der fotografischen Abbildung der Objektpunkte bei bekannter Kameraposition. Der Berechnung liegt das Modell einer Lochkamera zugrunde die im Idealfall die technische Umsetzung der Zentralprojektion darstellt. Die mathematische Formulierung der Zentralprojektion sind die sogenannten Kolinearitätsgleichungen (s. a. Kollineare Abbildung), die gleichzeitig die zentralen Gleichungen der Photogrammetrie darstellen:


Die Bedeutungen der Symbole sind im Folgenden erklärt:

  • i - Index zur Nummerierung der verschiedenen Kameras
  • j - Index zur Nummerierung der verschiedenen Objekt- bzw. Bildpunkte
  • c - Kammerkonstante, entspricht in etwa der Brennweite des Objektives
  • r - 3×3 Rotationsmatrix zur Definition der Blickrichtung der Kamera
  • - Vektor zur Beschreibung der Asymmetrie der Bildpunkte von Matrixsensoren
  • - Vektor zur Definition des Projektionszentrums
  • - Vektor zur Definition der 3D-Koordinaten der Objektpunkte
  • - Vektor zur Definition der Lage des Bildhauptpunkts auf dem Film oder Sensor
  • und - Funktionen zur Spezifizierung der Verzeichnungskorrekturen

Kamerakalibrierung

Bei der Kamerakalibrierung werden die Abbildungseigenschaften, also die innere Orientierung, der Kamera aus der bekannten äußeren Orientierung sowie den Bild- und 3D-Koordinaten der Objektpunkte berechnet.

Bildmessung

Die Bildmessung bestimmt die exakten Bildkoordinaten der Abbildung eines Objektpunktes in einem Bild. Im einfachsten Fall erfolgt die Bildmessung manuell. Auf einem Negativ oder Positiv wird die Position des interessierenden Objektpunktes von einem Menschen mit einer Messvorrichtung bestimmt. Da diese Methode sehr fehleranfällig und langsam ist, verwendet man Heute fast ausnahmslos computergestützte Verfahren zum Suchen und Vermessen von Objekten in Bildern. Dabei kommen Methoden der digitalen Bildverarbeitung und der Mustererkennung zum Einsatz. Wenn die Voraussetzungen gegeben sind, kann man diese Aufgaben wesentlich durch die Verwendung von künstlichen Signalmarken vereinfachen. Diese können mit automatischen Methoden identifiziert und sehr präzise auf 1/50 bis 1/100 Pixel im Bild lokalisiert werden können.

Rückwärtsschnitt

Der Rückwärtsschnitt berechnet die Kameraposition, also die äußere Orientierung aus der bekannten inneren Orientierung, den 3D-Koordinaten der Objektpunkte und ihren Bildkoordinaten.

Vorwärtsschnitt

Mit einem Vorwärtsschnitt kann man bei mindestens zwei bekannten äußeren Orientierungen und den dazugehörigen Bildkoordinaten die 3D-Koordinaten der Objektpunkte berechnen. Voraussetzung ist, dass mindestens zwei Fotografien eines Objektes aus unterschiedlichen Richtungen aufgenommen wurden, ob gleichzeitig mit mehreren Kameras oder sequentiell mit einer Kamera spielt dabei für das Prinzip keine Rolle.

Modellblockausgleichung

Zwei Bilder in einem analogen oder analytischen Auswertegerät sind relativ zu orientieren. Die entstehenden räumlichen Modellkoordinaten werden mit Hilfe verketteter dreidimensionaler Helmerttransformationen in einer gemeinsamen Ausgleichung auf die Erdoberfläche transformiert (absolute Orientierung). Die Numerik der zu lösenden Gleichungen besteht lediglich aus Rotationen, Translationen und einem Maßstab. Durch Bezug der Koordinaten auf ihren Schwerpunkt zerfallen die Normalgleichungen des Ausgleichungssystems und die zur Ausgleichung eines Modells notwendigen 7 Unbekannten reduzieren sich auf zwei Normalgleichungen mit 4 und 3 Unbekannten. Da die Numerik nicht allzu anspruchsvoll ist, fand dieses Berechnungsverfahren weite Verbreitung. Ein Ende der 70er Jahre an der Universität Stuttgart entwickeltes Programmsystem führte die Bezeichnung PAT-M43 (Programmsystem Aerotriangulation - Modellblockausgleichung mit 4 bzw. 3 Unbekannten). Die erreichbaren Genauigkeiten bei Modellblockausgleichungen ergeben mittlere Fehler (Standardabweichung) für die Lage von +- 7µm und für die Höhe von +- 10 µm.

Bündelblockausgleichung

Die Bündelblockausgleichung ist das wichtigste Verfahren der Photogrammetrie. Mit ihr kann man aus groben Näherungswerten für äußere und innere Orientierung gleichzeitig alle unbekannten Größen der Kolinearitätsgleichungen berechnen. Als bekannte Größe benötigt man lediglich die Bildkoordinaten der Objektpunkte, sowie zusätzliche Beobachtungen in Form eines Längenmaßstabes oder die räumlichen Koordinaten von Passpunkten. Diese Methode ist das am häufigsten eingesetzte Verfahren der Photogrammetrie bei statischen Messobjekten. Der Hauptvorteil liegt vor allem in der Möglichkeit einer Simultankalibrierung. Das heißt, dass die Messkamera während der eigentlichen Messung kalibriert wird. Mess- und Kalibrieraufnahmen sind also identisch, was den Aufwand für die Messung reduziert und gleichzeitig garantiert, dass die Messkamera stets kalibriert ist. Allerdings eignen sich nicht alle Konfigurationen von Objektpunkten für eine Simultankalibrierung. Dann müssen entweder zusätzliche Objektpunkte in die Messung miteinbezogen werden oder separate Kalibrieraufnahmen gemacht werden.

Die Bündelblockausgleichung basiert, wie der Name sagt, auf der gemeinsamen Berechnung von Bündelblöcken. Von der theoretischen Seite her ist es im Vergleich mit der Modellblockausgleichung das strengere Verfahren. Die Beschaffung der Ausgangsdaten ist allerdings einfacher. Die weitere Berechnung über die Modellbildung bis zur absoluten Orientierung erfolgt in einer einzigen Ausgleichungsrechnung. Die Anforderungen an die Numerik sind allerdings wesentlich höher als bei der Modellblockausgleichung: die Normalgleichungen zerfallen nicht und die Anzahl der Unbekannten ist mit bis zu mehreren Tausend deutlich höher.

Einteilung

Nach der verwendeten Methode der Bildmessung und der anschließenden Auswertung teilt man die Photogrammetrie auch in analoge Photogrammetrie mit optisch-mechanischer Fotografie und Auswertung, analytische Photogrammetrie mit optisch-mechanischer Fotografie und rechnergestützter Auswertung, digitale Photogrammetrie mit digitaler Fotografie und rechnergestützter Offline-Auswertung, sowie digitale Onlinephotogrammetrie mit digitaler Fotografie und Online-Bildmessung ein.

Anwendungen

Die Photogrammetrie lässt sich in die zwei Hauptanwendungsgebieten Luftbildphotogrammetrie und terrestrische bzw. Nahbereichsphotogrammetrie einteilen.

Luftbildphotogrammetrie

Bei der Luftbildphotogrammetrie werden die Fotografien mit flugzeuggetragenen, digitalen oder analogen Messbildkameras aufgenommen. Es entstehen meist regelmäßige, streifenweise angeordnete Bildverbände, in denen sich benachbarte Bilder deutlich überlappen. Die Bildverbände werden orientiert, also in ein gemeinsames Koordinatensystem transformiert. Die Orientierung der Bildverbände erfolgt anhand von Pass- und Verknüpfungspunkten im Rahmen einer Bündelblockausgleichung. Aus den orientierten Bildern können Folgeprodukte wie 3D-Punkte, digitale Geländemodelle (DGM), Orthophotos, etc., abgeleitet werden.

Die Ergebnisse der Luftbildphotogrammetrie dienen der Erstellung und Fortführung topographischer Karten und Orthophotos, der großmaßstäbigen Punktbestimmung in Liegenschaftskatastern und zur Flurbereinigung. Es können auch digitalen Geländemodellen (DGM) aus den Daten abgeleitet werden. Die Landnutzungserhebung sowie Umwelt- und Leitungskataster profitieren ebenfalls von den Resultaten der Luftbildphotogrammetrie.

Nahbereichsphotogrammetrie

Die Nahbereichsphotogrammetrie befasst sich mit Objekten in einem Größenbereich von wenigen Zentimetern bis zu rund 100 Metern. In der Nahbereichsphotogrammetrie gibt es, anders als in der Luftbildphotogrammetrie, keine Einschränkungen bei der Aufnahmeanordnung. Es können beliebige Aufnahmepositionen verwendet werden wie sie entstehen, wenn man eine Objekt mit einer Handkamera von mehreren Richtungen fotografiert. In der Regel benutzt man dazu heute hochauflösende Digitalkameras.

Die häufigesten Anwendungsfelder der Nahbereichsphotogrammetrie sind die industrielle Messtechnik (s. Streifenprojektion), Medizin und Biomechanik, sowie die Unfallaufnahme. In der Architektur und Archäologie nutzt man die Nahbereichsphotogrammetrie zur Bauaufnahme, also zur Dokumentation als Grundlage von Umbauten und denkmalpflegerischen Maßnahmen.

Ein wichtiges Nebenprodukt der Nahbereichsphotogrammetrie sind entzerrte Fotografien. Das sind Fotografien von nahezu ebenen Objekten wie Gebäudefassaden die so auf eine Fläche projiziert werden, dass die Abstände im Bild über einen einfachen Maßstab in metrische Längen und Abstände umgerechnet werden können.

In jüngster Zeit hat auch die moderne Kinematographie Techniken aus der Photogrammetrie übernommen. Beispiele dafür sind die „Bullet Time“ und „Burly Brawl“-Effekte aus den Filmen Matrix und Matrix Reloaded. Im Film Fight Club wurden mit dieser Technik interessante Kamerafahrten ermöglicht.

Historische Entwicklung

Die Theorie der Photogrammetrie wurde Mitte des 19. Jahrhunderts in Frankreich und Preußen parallel zur aufkommenden Photographie entwickelt. Édouard Gaston Deville war einer der Pioniere dieser Methode. Praktisch wurde sie seit Beginn des 20. Jahrhunderts als analoges Verfahren eingesetzt und weiterentwickelt. In den 1930er Jahren wurde die Ausgleichsrechnung entwickelt, die seit den 1960er Jahren in großem Stil auf Computern eingesetzt wird. Als ab Ende 1980er großformatige Photoscanner für Luftbilder bzw. Videokameras und Digitalkameras für Nahbereichs-Aufnahmen verfügbar waren, wurden die analogen Methoden der Photogrammetrie in den meisten Anwendungen durch digitale Auswerteverfahren ersetzt. Derzeit (2005) vollzieht sich der letzte Schritt zur Volldigitalisierung, indem auch in der Luftbildphotogrammetrie die herkömmlichen film-basierten Kameras zunehmend von digitalen Sensoren abgelöst werden.

Literatur

Siehe auch

Lehr- und Lernmaterial

Fachverbände

Lehr- und Forschungseinrichtungen

Hersteller