Zum Inhalt springen

Kabel

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 14. März 2012 um 16:51 Uhr durch Sorbas 48 (Diskussion | Beiträge) (neuer Abschnitt 00Literatur==). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Als Kabel wird in der Elektrotechnik ein mit Isolierstoffen ummantelter ein- oder mehradriger Verbund von Drähten bezeichnet, welcher der Leitung von elektrischer Energie dient. Als Isolierstoffe kommen üblicherweise verschiedenartige Kunststoffe zu Anwendung, welche die als elektrische Leiter genutzten Drähte umgeben. Die elektrischen Leiter bestehen meist aus Kupfer, seltener auch aus Aluminium oder verschiedenen Metalllegierungen. Dreidimensional betrachtet, folgt das Kabel meist zylindrischen, quaderförmigen oder sonstigen regulären Geometrien und kann im Querschnitt noch weitere innere Mantellagen aus isolierendem Material enthalten.

In elektrotechnischen Normen und besonders in der elektrischen Energietechnik wird im deutschen Sprachraum aus historischen Gründen zwischen elektrischen Kabeln und elektrischen Leitungen begrifflich unterschieden: Kabel sind entsprechend isolierte elektrische Leiter, welche in der Erde oder wie Seekabel unter Wasser verlegt werden. Leitungen sind bei unter Umständen gleichen Aufbau und Form durch die oberirdische Verwendung gekennzeichnet.[1] Eine Besonderheit stellen Freileitungen dar, wo der elektrische Leiter keine feste Isolierung aufweist und die umgebende Luft als Isolator dient. Umgangssprachlich werden die Begriffe Kabel und Leitung, wie auch im Englischen und im folgenden auch in diesem Artikel, synonym verwendet.

Besonders häufig gibt es mehradrige Kabel. Dabei umhüllt ein sogenannter Kabelmantel, ggf. ergänzt um weitere Schutzhüllen gegen mechanische Schäden, das Adernbündel mit den elektrischen Leitern. Die elektrischen Leiter weisen dabei jeder für sich eine entsprechende Adernisolierung auf, um ungewollte Kurzschlüsse zu vermeiden. Zur Erleichtung bei der Installation weisen die Adernisolierungen unterschiedliche Farben oder Farbkombinationen auf, welche die eindeutige Verwendung des jeweiligen Leiters ausdrückt und Anschlussfehler vermeidet.

Mehradriges Kabel (Leitung) aus dem Bereich der Elektroinstallation

Aufbau

Konfektioniertes Datenkabel

Der Kabelaufbau muss mehreren Erfordernissen entsprechen:

  • kostengünstige Herstellung
  • den Beanspruchungen bei der Installation (Zugfestigkeit, Biegeradius usw.)
  • den Umwelt- und Betriebsbedingungen (Korrosion, Temperatur, Verkehrslasten usw.)
  • dem Investitionszweck (Energie- oder Informationsübertragung also Aderanzahl, Leiterquerschnitt usw.)

Leiteranzahl

Die Anzahl der Strom führenden Drähte oder Litzenleitungen (auch Adern genannt) im Kabel ist die Adernanzahl. Bei mehradrigen Kabeln ist immer jede einzelne Ader von einem eigenen Isolator, der Adernisolierung, umhüllt, während eine äußere Umhüllung, der Kabelmantel, alle Adern umgibt:

Bei zweiadrigen Kabeln für Gleichstrom sind die Farben der Adernisolation oft rot für Plus (+) und schwarz für Minus (−), bei Netzspannung Wechselstrom meistens braun und blau, auch dann, wenn bei steckbaren Netzanschlussleitungen blau nicht immer der Neutralleiter ist.

In Netzkabeln wird bei Schutzklasse I ein grün-gelber Schutzleiter mitgeführt. Dieser führt Erdpotential und dient dazu, im Fehlerfall gefährliche Berührungsspannungen an leitfähigen Gehäuse- oder Bedienteilen zu verhindern, indem diese gegen Erde abgeleitet werden. Hinzu kommt ein schwarzer oder brauner Außenleiter und ein blauer Neutralleiter. Bei Geräteanschlußleitungen sind die Farben braun und schwarz ebenfalls gebräuchlich, obwohl die Zuordnung zu Neutral- und Außenleiter nicht gegeben ist.

Bei Drehstrom werden nach alter Norm zwei schwarze und ein brauner, nach neuer Norm ein brauner, ein schwarzer und ein grauer Außenleiter verwendet. Der Neutralleiter kann bei symmetrischer Last oder bei Verwendung eines PEN-Leiters gegebenenfalls entfallen. In diesem Fall ist einer der Außenleiter häufig blau, sofern die Anlage vor 2004 errichtet wurde.

In Altbauten findet man gelegentlich noch die nicht mehr zulässigen Kabelfarben Schwarz für den Außenleiter, Rot für geschaltete Außenleiter und den Schutzleiter sowie Grau für den Neutralleiter. Aufgrund der Verwechslungsgefahr dürfen in Installationen und Industrieanlagen mit Netzspannung die Adernfarben rot, gelb und grün nicht mehr verwendet werden, die Farbe gelb/grün ist dem Schutzleiter vorbehalten.

Hochspannungskabel sind oft einadrig. Es gibt jedoch auch zweipolige Hochspannungskabel für Gleichspannung. Dreiadrige Hochspannungskabel für Dreiphasenwechselstrom werden auch als H-Kabel bezeichnet. Mitunter werden auch zweipolige Kabel einpolig betrieben, in dem sie an ihren Enden parallelgeschaltet werden.

Kabel für EDV, Signalübertragung und Nachrichtentechnik haben je nach Einsatzzweck zwei bis mehrere tausend Adern. Außerdem wird nach der Art der Adernverseilung unterschieden (zum Beispiel lagenverseilt, paarverseilt, Sternvierer). Signalkabel-Adern sind oft paarweise oder insgesamt von einem Schirm umgeben.

Kabel für nieder- und hochfrequente Signale sind oft Koaxialkabel.

Lichtleitkabel bestehen aus einer Glas- oder Kunststofffaser sowie einem relativ dicken Mantel, der mechanischen Schutz und (besonders bei Leistungsanwendungen der Laser-Materialbearbeitung) eine Begrenzung des Biegeradius bewirkt.

Material der Adern

Am häufigsten wird Kupfer wegen seiner vergleichsweise sehr guten elektrischen Leitfähigkeit verwendet, gefolgt von dem Leichtmetall Aluminium. Aluminium weist zwar nur rund 2/3 der elektrischen Leitfähigkeit von Kupfer auf, womit bei gleicher Länge und Widerstand eine Leitung aus Alumium im Gegensatz zur Kupferleitung ca. den 1,5-fachen Querschnitt bedarf. Allerdings beträgt das spezifische Gewicht von Aluminium nur rund 1/3 von Kupfer. Somit stellt in allen Anwendungen wo Platzprobleme für die dickeren elektrischen Aluminiumleiter keine, aber das Gewicht eine wesentliche Rolle spielt, Aluminium gegenüber Kupfer die bessere Wahl dar. Typischerweise liegt dieser Fall im Bereich der Freileitungen vor, wo die Leiterseile, bis auf einem Stahlkern, aus Alumium bestehen.

Silber weist zwar unter den Metallen die höchste elektrische Leitfähigkeit auf, wird allerdings aus Kostengründen nur in Sonderfällen, wie im Bereich der Hochfrequenztechnik, als dünner Überzug über einem Kupferkabel verwendet. In Sonderfällen werden auch Supraleiter verwendet, die unter ihre Sprungtemperatur abgekühlt werden müssen, indem Kühlmittel durch separate Kanäle im Kabel gepumpt wird.

In Kommunikationsnetzen kommen neben Kupferadern auch optische Leiter (Glasfaserkabel, Lichtleitkabel) zum Einsatz.

Farbcode für vieladrige Leitungen

Es gibt mehrere Arten, die Nummer der Adern mit Farben zu kennzeichnen. Aderkennzeichnung nach DIN 47100 mit Farbwiederholung ab 45. Abkürzend werden die Farb-Kurzzeichen nach IEC 60757 verwendet.

Nr. Farbe Nr. Farbe Nr. Farbe Nr. Farbe Nr. Farbe Nr. Farbe
1 weiß 11 grau-rosa 21 weiß-blau 31 grün-blau 41 grau-schwarz 51 blau
2 braun 12 rot-blau 22 braun-blau 32 gelb-blau 42 rosa-schwarz 52 rot
3 grün 13 weiß-grün 23 weiß-rot 33 grün-rot 43 blau-schwarz 53 schwarz
4 gelb 14 braun-grün 24 braun-rot 34 gelb-rot 44 rot-schwarz 54 violett
5 grau 15 weiß-gelb 25 weiß-schwarz 35 grün-schwarz 45 weiß 55 grau-rosa
6 rosa 16 gelb-braun 26 braun-schwarz 36 gelb-schwarz 46 braun 56 rot-blau
7 blau 17 weiß-grau 27 grau-grün 37 grau-blau 47 grün 57 weiß-grün
8 rot 18 grau-braun 28 gelb-grau 38 rosa-blau 48 gelb 58 braun-grün
9 schwarz 19 weiß-rosa 29 rosa-grün 39 grau-rot 49 grau 59 weiß-gelb
10 violett 20 rosa-braun 30 gelb-rosa 40 rosa-rot 50 rosa 60 gelb-braun
61 weiß-grau

Material der Aderisolation

Aufbringen der Aderisolation in einem Extruder

Die Adernisolation soll einen möglichst hohen spezifischen elektrischen Widerstand haben und muss auch Überspannungen standhalten. Oft muss sie auch einen möglichst geringen dielektrischen Verlustfaktor haben.

Früher verwendete man dafür oft Papier, um die Feuchteempfindlichkeit zu verringern und die Durchschlagsfestigkeit zu erhöhen, tränkte man das Papier mit Öl oder Wachs. Öl-Papierkabel (auch Massekabel genannt) sind noch heute im Einsatz und im Hoch- und Mittelspannungsbereich den mit PVC isolierten Kabeln im Hinblick auf ihre Lebensdauer und Durchschlagsfestigkeit überlegen. Allerdings sind die Montagekosten enorm hoch, daher werden sie durch Kunststoffkabel mit einer Isolation aus vernetztem Polyethylen (VPE) ersetzt.

Ein gebräuchlicher Isolationswerkstoff heutiger Energie- und Signalkabel ist Polyethylen (PE).
Eine Möglichkeit, die Einsatztemperatur PVC-isolierter Kabel zu erhöhen, ist die Elektronenstrahl-Vernetzung. PVC hat jedoch einen hohen dielektrischen Verlustfaktor, weshalb es als Isolation für Signalkabel insbesondere bei hohen Frequenzen oder großen Längen oft ungeeignet ist. Breitband-Signalkabel, Hochfrequenzkabel und auch Telefonleitungen sind daher oft mit Polyethylen (PE) isoliert.

Kabel für extrem hohe Anforderungen werden mit PTFE (Teflon) isoliert (z. B. Triebwerksbereich in Flugzeugen). Für flexible, thermisch und mechanisch hoch beanspruchte Kabel wird Gummi als Isolation verwendet. Silikongummi wird bei hohen Temperaturen und hohen Spannungen eingesetzt.

Die Adern von Kabeln bestehen bei flexiblen Anwendungen und im KFZ- und Anlagenbau aus Litzenleitungen. Bei besonders hoher mechanischer Beanspruchung (Handgeräte, Energieführungsketten, Veranstaltungs- und Bühnentechnik) werden sogenannte feinstdrähtige Litzen und eine spezielle Verseilung angewendet.

Material der Ummantelung

Maschine zum Verseilen von Kabeln
Aufbringen des Mantels in einem Extruder

Der Kabelmantel schützt das Kabel vor äußeren Einflüssen und enthält gegebenenfalls eine Abschirmung. Blei war lange Zeit ein häufig verwendeter Werkstoff für die Ummantelung papierisolierter Kabel. Es findet heute noch Verwendung in bleigemantelten Kabeln (z. B. NYKY-J für Niederspannung oder N2XS(F)K2Y in der Mittelspannung) in Raffinerien, um die Kabel vor Beschädigungen durch Aromaten und Kohlenwasserstoffe zu schützen. Zum Teil verwendet man mittlerweile Kabel mit einem Zwischenmantel aus Polyamid bzw. Nylon. Meistens sind diese Kabel noch einmal mit dem schwerentflammbaren PVC ummantelt, um eine flammhemmende Wirkung zu erhalten. (Typen z. B. 2XS(L)2Y4YY für Mittelspannung bzw. 2X(L)2Y4YY für Niederspannung).

Heute kommen neben PVC auch Kunststoffe wie Polyurethan oder Polyethylen zum Einsatz. Polyethylen ist sehr kostengünstig, aber brennbar. PVC erzeugt bei Brandeinwirkung giftige Gase, wie Chlorwasserstoff und Dioxine. Deshalb kommen in modernen Gebäuden mit großen Personenansammlungen, wie zum Beispiel in Bahnhöfen, Flughäfen, Museen, Kongreßhallen und Kaufhäusern, halogenfreie, flammwidrige Kabel und Leitungen zum Einsatz. Für flexible, hoch beanspruchte Kabel wird Gummi als Mantel verwendet. Zur Signalübertragung (Netzwerkkabel für die EDV, Steuerungs- und Audiokabel) werden die Kabelmäntel vielfach mit einer Schirmung aus Metallfolie oder Kupferdrahtgeflecht versehen, um die elektromagnetische Verträglichkeit des Kabels zu verbessern.

Auch die von Frequenzumrichtern zu den Motoren führenden Energieleitungen müssen oft abgeschirmt werden, um Störabstrahlungen zu vermeiden (siehe Elektromagnetische Verträglichkeit).

Erd- und Seekabel sowie Freileitungen sind mit Armierungen (Stahldrahtgeflecht, Stahlblech) als Schutz und zur Erhöhung ihrer mechanischen Stabilität versehen.

Um Beschädigungen des Mantels frühzeitig zu erkennen, werden in der Nachrichtentechnik vieladrige Kabel mit Druckluft gefüllt und der Kabelinnendruck wird automatisch überwacht. Bei Energiekabeln wird hier stattdessen ein isolierendes Schutzgas (z. B. Schwefelhexafluorid) verwendet.

Lichtleitkabel für Hochleistungslaser sind mit einer Faserbruchüberwachung versehen, welche die Leitfähigkeit eines mitgeführten Drahtes oder einer Metall-Beschichtung der Faser überwacht.

Für die meisten Einsatzzwecke werden Kabel nach internationalen Normen hergestellt, die vielfach auch Kürzel für bestimmte Kabelklassen definieren. Siehe dazu Harmonisierte Typenkurzzeichen von Leitungen.

Beanspruchungsbedingungen

Häufig liegt der Schwerpunkt bei der Erstellung der Kabelwege (Kabeltrassen, Schutzrohre, Strommasten, Kabelgraben, Mauerschlitz usw.). Das Verlegen der Kabel selbst ist dann nach diesen Vorbereitungen montagemäßig der kleinere Anteil.

Die Beanspruchungsbedingungen eines Kabels bestimmen wesentlich seine Konstruktion, z. B.:

  • Verlegung auf dem Meeresgrund Seekabel: starke Bewehrung, zugfest, längs- und querwasserdicht
  • unterirdische Verlegung (Erdkabel): sichere Ummantelung, evtl. Bewehrung, ggf. längs- und querwasserdicht
  • oberirdisch im Außenbereich: Ultraviolett-stabiler Mantel, zugfest
  • für bewegliche Geräte: fein- oder feinstdrähtige Adern, evtl. Gummi-Isolation z. B. Ölflex
  • mechanische Beanspruchung durch Kanten: Gewebe, Lackgewebe, Lackglasfasergewebe
  • in brandgefährdeten Räumen: halogenfreie, schwer entflammbare Isolation
  • Einfluss von Kohlenwasserstoffen: Ölfeste Werkstoffe
  • hohe elektrische oder magnetische Störeinflüsse oder Störempfindlichkeit: verdrillte Adernpaare, einfache oder doppelte Abschirmung
  • hohe Temperaturen oder Erwärmung: Gummi, Silikongummi, PTFE

Die Temperaturbeständigkeit von Kabeln wird in Wärmeklassen (nach IEC 60085) angegeben:

Wärme-
klasse
Grenz-
temperatur
in °C
Isolierstoffe Anwendungsbeispiele
Y 90 PVC; PET; Naturgummi; Baumwolle; Papierprodukte; Kunstseide Leitungen und Abdeckungen
A 105 synthetischer Kautschuk; Isolieröle; Leitungen, Wicklungen, Isolierschlauch
E 120 mit Kunstharzlacken getränkte Papierschichtstoffe Wicklungen
B 130 ungetränkte und getränkte Glasfaserprodukte; Pressteile mit mineralischen Füllstoffen Wicklungen und Pressteile
F 155 mit geeigneten Harzen (z. B. Epoxidharz) getränkte Glasfaserprodukte; Polyester-Lacke Wicklungen
H 180 mit Silikon-Harzen getränkte Glasfaser- und Glimmerprodukte; synthetischer Kautschuk hitzefeste Leitungen und Wicklungen, Abdeckungen, Isolierschläuche
C Vorlage:SortKey ist veraltet; bitte verwende Alternativen gemäß Hilfe:Tabellen/Sortierung #Veraltet.>180 Glimmer; Glas, Porzellan und andere keramische Werkstoffe; mit Silikonharzen getränkte Glasfaser und Glimmerprodukte; hitzefeste Wicklungen

Einsatzzweck

Energiekabel

15 cm Außendurchmesser ölgekühlte Kabel, die in Dreierbündeln die gesamte Grand-Coulee-Talsperre durchlaufen. Dieses Bild zeigt den Einlauf in die „Potheads“ oberhalb der Talsperre. Nachträglich wurden dort Brandschutz-Mörtel Schotts eingebaut. Sollte ein Kabel ausschlagen, wird automatisch die Ölzufuhr abgestellt, um dem Feuer keinen Brennstoff zu liefern

Die für ein Kabel zulässige Stromstärke hängt von folgenden Kriterien ab:

  • Temperaturbeständigkeit der Isolierung
  • Querschnittsfläche der Leiter
  • Anzahl der Leiter
  • Umgebungstemperatur
  • Verlegeart
  • Anhäufung von Leitungen mit gleichem Kabelweg
  • Betriebsspannung

Entsprechende Angaben findet man zum Beispiel in EN 60204-1:2007-06 „Elektrische Ausrüstung von Maschinen – Allgemeine Anforderungen“.

Hochfrequenz-, Signal- und Steuerkabel

Bei HF- und Signalkabeln spielt auch die Impedanz bzw. die Wellenimpedanz sowie die dielektrische Güte bzw. der dielektrische Verlustfaktor des Isolationswerkstoffes eine Rolle.

Bei NF-Kabeln ist neben dem Wirkwiderstand R' (Ohm/km) auch die Kapazität C' (µF/km) von wesentlicher Bedeutung. Die Kabelkapazität von Steuerkabeln hat einen Wert von ca. 0,3 µF/km.

Für Hochfrequenz und Breitband-Signalübertragung werden (auch für hohe Übertragungsleistungen) meistens Koaxialkabel verwendet. Diese haben prinzipiell kein nach außen dringendes elektrisches und magnetisches Feld, wenn der Mantelleiter geschlossen ist und die Seele in der Mitte ist. Koaxialkabel für Hochfrequenzanwendung haben daher ein Dielektrikum, das bei möglichst geringer Dichte den Innenleiter optimal stützt. Die zur Verlustarmut erforderliche geringe Dichte wird oft durch Luftanteile oder Schaumstoff erreicht. Außen ist oft eine doppelte Schirmung, bestehend aus Geflecht und Metallfolie, aufgebracht. Solche Koaxialkabel sind sehr störsicher.

Koaxialkabel haben meistens eine Wellenimpedanz von 50 … 75 Ohm.

Früher verwendete man für Antennenleitungen auch sog. Stegleitungen (Z = 240 Ohm). Sie bestehen aus zwei symmetrisch angeordneten, mit einem Isolierstoffsteg verbundenen Adern. Diese Kabel sind aufgrund der nach außen dringenden Felder störempfindlicher, weisen jedoch eine geringere Dämpfung als Koaxialkabel auf, wenn sie auf Abstand zu Gebäudeteilen verlegt werden.

Als Signalleitungen oder Steuerleitungen werden oft mehradrige, geschirmte oder ungeschirmte Kabel mit Querschnitten von 0,14 bis 0,5 mm² verwendet.

Zur Übertragung hoher Datenraten werden sog. Twisted-Pair-Kabel verwendet: Ein oder mehrere Adernpaare sind jeweils miteinander verdrillt und in separaten Abschirmungen geführt.

Bandkabel („Hosenträgerkabel“) bestehen aus eine Vielzahl parallel nebeneinander liegender Adern und werden besonders innerhalb von Computern und elektronischen Geräten als Signalleitungen verwendet. Sie können kostengünstig und zuverlässig mit der Schneidklemmtechnik angeschlossen werden.

Es gibt auch gefaltet in runden Abschirmmänteln geführte Bandkabel, um gleichfalls die Schneidklemmtechnik nutzen zu können.

Beispiele

Solche Kabel sind vieladrig. Die Adern sind paarig oder in Vierergruppen organisiert. In der Regel sind sie zum großen Teil auf öffentlichen Grundstücken (Straßen) erdverlegt. Das Bild zeigt die aufgefächerte "Prüfblume".
Häufig in Computern zu finden. Der Anschluss erfolgt über Schneidklemmtechnik für alle Adern gleichzeitig.
Eine zentrale isolierte Ader ist umgeben mit der Abschirmung. Solche Kabel eignen sich für die Hochfrequenzübertragung. Beispiel: Antennenkabel.
Besteht aus verdrillten Aderpaaren. Die Verdrillung erlaubt eine ähnlich störungsfreie Nachrichtenübertragung wie Koaxialkabel.

Sicherheitsrelevante Installationen

Bei sicherheitsrelevanten Systemen, wie Sicherheitsbeleuchtungsanlagen, Brandmeldeanlagen oder Alarmierungsanlagen fordern einschlägige Vorgaben in bestimmten Bereichen Kabel und Leitungen mit integriertem Funktionserhalt. Unter Alarmierungsanlagen sind hier keine Alarmanlagen im Sinne von Einbruchmeldetechnik gemeint, für solche Systeme ist in der Regel kein Funktionserhalt notwendig. Vielmehr handelt es sich um Anlagen gem. DIN VDE 0828 oder DIN VDE 0833-4, die durch akustische Signalisierung anwesende Personen bei Gefahren warnen und zur Gebäuderäumung veranlassen.

In Deutschland ist dieser Sachverhalt in der DIN 4102 Teil 12 und der bundeslandspezifischen Umsetzung der „Muster-Leitungsanlagen-Richtlinie“ MLAR[2] geregelt. Das bedeutet, dass die Verkabelung (Befestigungsmaterial und Kabel) bei Brandeinwirkung für eine festgelegte Zeit funktionsfähig bleiben muss. In dieser Zeit darf weder der Isolationswiderstand so klein werden, dass es zu einem Stromfluss zwischen den Leitern kommt, noch darf der Widerstand des Leiters so ansteigen, dass der Stromfluss behindert würde. Mit anderen Worten dürfen weder Kurzschluss noch Unterbrechung auftreten. Diese Eigenschaften werden durch einen speziellen Aufbau der Leitung sowie besondere Materialien für die Isolierung erreicht. Die Leitungen sind von außen durch ihren orangefarbenen Mantel sowie durch einen kennzeichnenden wiederholten Aufdruck zu erkennen. Gebräuchliche Zeiten für den erforderlichen Funktionserhalt sind 30 Minuten, 60 Minuten oder 90 Minuten (E30, E60, E90). Geraten diese Leitungen nach Ablauf des Zeitraumes in Brand, weisen sie überdies eine höhere Brandlast als normale Leitungen, wie NYM oder I-Y(St)Y auf.

Um einen wirksamen Funktionserhalt zu erzielen, ist neben der Leitung auch das Leitungsführungssystem und die Umgebung zu betrachten. Die verschiedenen Formen der Leitungsführungssysteme (Kabelrinne, Stahlpanzerrohr, Einzelbefestigung) haben gemein, dass sie ebenfalls für die entsprechende Dauer einem Feuer standhalten müssen.

Gemeinsam mit der Leitung ergeben sie eine sogenannte „geprüfte Leitungsanlage“. Entsprechend geprüfte Kombinationen werden durch die Hersteller in Prüfzertifikaten benannt. Die Installationsumgebung ist so zu gestalten, dass die Kabel und Leitungen während der Brandeinwirkung nicht durch berstende oder herabfallende Teile beeinträchtigt oder zerstört werden.

Literatur

  • Hans Schultke: ABC der Elektroinstallation. 14. Auflage. EW Medien und Kongress GmbH, Frankfurt 2009, ISBN 978-3-8022-0969-7.
  • Prof. Dipl.-Ing. Wilhelm Rudolph: VDE Schriftenreihe 39; "Einführung in DIN VDE 0100", Elektrische Anlagen von Gebäuden. 2. Auflage. VDE Verlag GmbH, Berlin - Offenbach 1999, ISBN 978-3-8007-1928-2(?!).:

Siehe auch

Wiktionary: Kabel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Kabel – Sammlung von Bildern, Videos und Audiodateien
optische Leiter

Einzelnachweise

  1. Deutsches Kupferinstitut, abgefragt am 28. November 2011
  2. Muster-Leitungsanlagen-Richtlinie - MLAR; Stand: November 2005 (PDF)

Vorlage:Link GA