Datei:Double pendulum predicting dynamics.gif

Double_pendulum_predicting_dynamics.gif (360 × 360 Pixel, Dateigröße: 1,84 MB, MIME-Typ: image/gif, Endlosschleife, 334 Bilder, 33 s)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
English: In a chaotic system, like a double pendulum, small changes in the initial conditions become large changes in the long-term evolution of the system, but on the short/medium term, how well we can predict the dynamics is not constant. Sometimes small perturbations will not change much, sometimes small perturbation make even short-term predictions impossible. At each frame the position of the second mass is perturbed slightly, and the grey lines show the predicted dynamics for all the perturbed conditions.
Datum
Quelle https://twitter.com/j_bertolotti/status/1411987574109913092
Urheber Jacopo Bertolotti
Genehmigung
(Weiternutzung dieser Datei)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 12.0 code

p1[t_] := {l Sin[\[Theta][t]], -l Cos[\[Theta][t]]};
p2[t_] := p1[t] + {l Sin[\[Phi][t]], -l Cos[\[Phi][t]]};
T[t_] := FullSimplify[1/2 m Norm[D[p1[t], t]]^2 + 1/2 m Norm[D[p2[t], t]]^2, Assumptions -> {m > 0, l > 0, \[Theta][t] > 0, \[Theta]'[t] > 0, \[Phi]'[t] > 0, \[Phi][t] > 0}];
V[t_] := FullSimplify[m g p1[t][[2]] + m g p2[t][[2]], Assumptions -> {m > 0 , l > 0}];
L[t_] := T[t] - V[t];
e1[t_] := FullSimplify[D[D[L[t], \[Theta]'[t]], t] - D[L[t], \[Theta][t]]];
e2[t_] := FullSimplify[D[D[L[t], \[Phi]'[t]], t] - D[L[t], \[Phi][t]]];
(**)
tmax = 1000; m1 = 1; m2 = 1; g = 1; l = 1;
s1 = NDSolve[{e1[t] == 0, e2[t] == 0, \[Theta][0] == \[Pi], \[Phi][0] == \[Pi]/2, \[Theta]'[0] == 0, \[Phi]'[0] == 0}, {\[Theta], \[Phi]}, {t, 0, tmax}, MaxSteps -> Infinity]
frames = Table[
   prediction = Table[NDSolve[{e1[t1] == 0, e2[t1] == 0, \[Theta][0] == Evaluate[(\[Theta][t] /. s1)][[1]], \[Phi][0] == Evaluate[(\[Phi][t] /. s1)][[1]] + \[Delta], \[Theta]'[0] == Evaluate[(\[Theta]'[t] /. s1)][[1]], \[Phi]'[0] == Evaluate[(\[Phi]'[t] /. s1)][[1]]}, {\[Theta], \[Phi]}, {t1, 0, 10}, MaxSteps -> Infinity]
     , {\[Delta], -0.002, 0.002, 0.00025}];
Show[
    ParametricPlot[p2[t] /. prediction, {t, 0, 10}, PlotStyle -> Directive[Gray, Opacity[0.1]] , Axes -> False]
    ,
    Graphics[{
      Black, Thickness[0.01], Line[{{0, 0}, (p1[t] /. s1)[[1]], (p2[t] /. s1)[[1]]}], Orange, Disk[(p1[t] /. s1)[[1]], 0.15], Disk[(p2[t] /. s1)[[1]], 0.15], Black, Thick, Circle[(p1[t] /. s1)[[1]], 0.15], 
      Circle[(p2[t] /. s1)[[1]], 0.15]
      ,
      Black, Disk[{0, 0}, 0.1]
      }, PlotRange -> {{-3, 3}, {-3, 3}}], PlotRange -> {{-3, 3}, {-3, 3}}]
   , {t, 0, 100, 0.3}];
ListAnimate[frames, 10]

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.
Sometimes small perturbations will not change much in the evolution of a chaotic double pendulum, sometimes small perturbation make even short-term predictions impossible.

In dieser Datei abgebildete Objekte

Motiv

image/gif

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell10:55, 6. Jul. 2021Vorschaubild der Version vom 10:55, 6. Jul. 2021360 × 360 (1,84 MB)BertoUploaded own work with UploadWizard

Keine Seiten verwenden diese Datei.

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei:

Metadaten