Vector fields in cylindrical coordinates
Bearbeiten
Vectors are defined in cylindrical coordinates by (ρ,φ,z), where ρ is the length of the vector projected onto the X-Y-plane, φ is the angle of the projected vector with the positive X-axis (0 ≤ φ < 2π) and z is the regular z-coordinate.
(ρ,φ,z) is given in cartesian coordinates by:
[
ρ
=
x
2
+
y
2
ϕ
=
arctan
(
y
/
x
)
,
0
≤
ϕ
<
2
π
z
=
z
{\displaystyle \left[{\begin{matrix}\rho &=&{\sqrt {x^{2}+y^{2}}}\\\phi &=&\operatorname {arctan} (y/x),&0\leq \phi <2\pi \\z&=&z\end{matrix}}\right.}
or inversely by:
[
x
=
ρ
cos
ϕ
y
=
ρ
sin
ϕ
z
=
z
{\displaystyle \left[{\begin{matrix}x&=&\rho \cos \phi \\y&=&\rho \sin \phi \\z&=&z\end{matrix}}\right.}
Any vector field can be written in terms of the unit vectors as:
A
=
A
x
x
^
+
A
y
y
^
+
A
z
z
^
=
A
ρ
ρ
^
+
A
ϕ
ϕ
^
+
A
z
z
^
{\displaystyle \mathbf {A} =A_{x}\mathbf {\hat {x}} +A_{y}\mathbf {\hat {y}} +A_{z}\mathbf {\hat {z}} =A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}{\boldsymbol {\hat {z}}}}
The cylindrical unit vectors are related to the cartesian unit vectors by:
[
ρ
^
ϕ
^
z
^
]
=
[
cos
ϕ
sin
ϕ
0
−
sin
ϕ
cos
ϕ
0
0
0
1
]
[
x
^
y
^
z
^
]
{\displaystyle {\begin{bmatrix}{\boldsymbol {\hat {\rho }}}\\{\boldsymbol {\hat {\phi }}}\\{\boldsymbol {\hat {z}}}\end{bmatrix}}={\begin{bmatrix}\cos \phi &\sin \phi &0\\-\sin \phi &\cos \phi &0\\0&0&1\end{bmatrix}}{\begin{bmatrix}\mathbf {\hat {x}} \\\mathbf {\hat {y}} \\\mathbf {\hat {z}} \end{bmatrix}}}
Time derivative of a vector field in cylindrical coordinates
Bearbeiten
To find out how the vector field A changes in time we calculate the time derivatives.
In cartesian coordinates this is simply:
A
˙
=
A
˙
x
x
^
+
A
˙
y
y
^
+
A
˙
z
z
^
{\displaystyle \mathbf {\dot {A}} ={\dot {A}}_{x}\mathbf {\hat {x}} +{\dot {A}}_{y}\mathbf {\hat {y}} +{\dot {A}}_{z}\mathbf {\hat {z}} }
However, in cylindrical coordinates this becomes:
A
˙
=
A
˙
ρ
ρ
^
+
A
ρ
ρ
^
˙
+
A
˙
ϕ
ϕ
^
+
A
ϕ
ϕ
^
˙
+
A
˙
z
z
^
+
A
z
z
^
˙
{\displaystyle \mathbf {\dot {A}} ={\dot {A}}_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\rho }{\boldsymbol {\dot {\hat {\rho }}}}+{\dot {A}}_{\phi }{\boldsymbol {\hat {\phi }}}+A_{\phi }{\boldsymbol {\dot {\hat {\phi }}}}+{\dot {A}}_{z}{\boldsymbol {\hat {z}}}+A_{z}{\boldsymbol {\dot {\hat {z}}}}}
We need the time derivatives of the unit vectors.
They are given by:
[
ρ
^
˙
=
ϕ
˙
ϕ
^
ϕ
^
˙
=
−
ϕ
˙
ρ
^
z
^
˙
=
0
{\displaystyle \left[{\begin{matrix}{\boldsymbol {\dot {\hat {\rho }}}}&=&{\dot {\phi }}{\boldsymbol {\hat {\phi }}}\\{\boldsymbol {\dot {\hat {\phi }}}}&=&-{\dot {\phi }}{\boldsymbol {\hat {\rho }}}\\{\boldsymbol {\dot {\hat {z}}}}&=&0\end{matrix}}\right.}
So the time derivative simplifies to:
A
˙
=
ρ
^
(
A
˙
ρ
−
A
ϕ
ϕ
˙
)
+
ϕ
^
(
A
˙
ϕ
+
A
ρ
ϕ
˙
)
+
z
^
A
˙
z
{\displaystyle \mathbf {\dot {A}} ={\boldsymbol {\hat {\rho }}}({\dot {A}}_{\rho }-A_{\phi }{\dot {\phi }})+{\boldsymbol {\hat {\phi }}}({\dot {A}}_{\phi }+A_{\rho }{\dot {\phi }})+{\boldsymbol {\hat {z}}}{\dot {A}}_{z}}
Gradient, divergence, curl, and laplacian in cylindrical coordinates
Bearbeiten
Vectors are defined in spherical coordinates by (r,θ,φ), where r is the length of the vector, θ is the angle with the positive Z-axis (0 <= θ <= π) and φ is the angle with the X-Z-plane (0 <= φ < 2π).
(r,θ,φ) is given in cartesian coordinates by:
[
r
=
x
2
+
y
2
+
z
2
θ
=
arccos
(
z
/
r
)
,
0
≤
θ
≤
π
ϕ
=
arctan
(
y
/
x
)
,
0
≤
ϕ
<
2
π
{\displaystyle \left[{\begin{matrix}r&=&{\sqrt {x^{2}+y^{2}+z^{2}}}\\\theta &=&\arccos \left(z/r\right),&0\leq \theta \leq \pi \\\phi &=&\operatorname {arctan} (y/x),&0\leq \phi <2\pi \end{matrix}}\right.}
or inversely by:
[
x
=
r
sin
θ
cos
ϕ
y
=
r
sin
θ
sin
ϕ
z
=
r
cos
θ
{\displaystyle \left[{\begin{matrix}x&=&r\sin \theta \cos \phi \\y&=&r\sin \theta \sin \phi \\z&=&r\cos \theta \end{matrix}}\right.}
Any vector field can be written in terms of the unit vectors as:
A
=
A
x
x
^
+
A
y
y
^
+
A
z
z
^
=
A
r
r
^
+
A
θ
θ
^
+
A
ϕ
ϕ
^
{\displaystyle \mathbf {A} =A_{x}\mathbf {\hat {x}} +A_{y}\mathbf {\hat {y}} +A_{z}\mathbf {\hat {z}} =A_{r}{\boldsymbol {\hat {r}}}+A_{\theta }{\boldsymbol {\hat {\theta }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}}
The spherical unit vectors are related to the cartesian unit vectors by:
[
r
^
θ
^
ϕ
^
]
=
[
sin
θ
cos
ϕ
sin
θ
sin
ϕ
cos
θ
cos
θ
cos
ϕ
cos
θ
sin
ϕ
−
sin
θ
−
sin
ϕ
cos
ϕ
0
]
[
x
^
y
^
z
^
]
{\displaystyle {\begin{bmatrix}{\boldsymbol {\hat {r}}}\\{\boldsymbol {\hat {\theta }}}\\{\boldsymbol {\hat {\phi }}}\end{bmatrix}}={\begin{bmatrix}\sin \theta \cos \phi &\sin \theta \sin \phi &\cos \theta \\\cos \theta \cos \phi &\cos \theta \sin \phi &-\sin \theta \\-\sin \phi &\cos \phi &0\end{bmatrix}}{\begin{bmatrix}\mathbf {\hat {x}} \\\mathbf {\hat {y}} \\\mathbf {\hat {z}} \end{bmatrix}}}
Time derivative of a vector field in spherical coordinates
Bearbeiten
To find out how the vector field A changes in time we calculate the time derivatives.
In cartesian coordinates this is simply:
A
˙
=
A
˙
x
x
^
+
A
˙
y
y
^
+
A
˙
z
z
^
{\displaystyle \mathbf {\dot {A}} ={\dot {A}}_{x}\mathbf {\hat {x}} +{\dot {A}}_{y}\mathbf {\hat {y}} +{\dot {A}}_{z}\mathbf {\hat {z}} }
However, in spherical coordinates this becomes:
A
˙
=
A
˙
r
r
^
+
A
r
r
^
˙
+
A
˙
θ
θ
^
+
A
θ
θ
^
˙
+
A
˙
ϕ
ϕ
^
+
A
ϕ
ϕ
^
˙
{\displaystyle \mathbf {\dot {A}} ={\dot {A}}_{r}{\boldsymbol {\hat {r}}}+A_{r}{\boldsymbol {\dot {\hat {r}}}}+{\dot {A}}_{\theta }{\boldsymbol {\hat {\theta }}}+A_{\theta }{\boldsymbol {\dot {\hat {\theta }}}}+{\dot {A}}_{\phi }{\boldsymbol {\hat {\phi }}}+A_{\phi }{\boldsymbol {\dot {\hat {\phi }}}}}
We need the time derivatives of the unit vectors.
They are given by:
[
r
^
˙
θ
^
˙
ϕ
^
˙
]
=
[
0
θ
˙
ϕ
˙
sin
θ
−
θ
˙
0
ϕ
˙
cos
θ
−
ϕ
˙
sin
θ
−
ϕ
˙
cos
θ
0
]
[
r
^
θ
^
ϕ
^
]
{\displaystyle {\begin{bmatrix}{\boldsymbol {\dot {\hat {r}}}}\\{\boldsymbol {\dot {\hat {\theta }}}}\\{\boldsymbol {\dot {\hat {\phi }}}}\end{bmatrix}}={\begin{bmatrix}0&{\dot {\theta }}&{\dot {\phi }}\sin \theta \\-{\dot {\theta }}&0&{\dot {\phi }}\cos \theta \\-{\dot {\phi }}\sin \theta &-{\dot {\phi }}\cos \theta &0\end{bmatrix}}{\begin{bmatrix}{\boldsymbol {\hat {r}}}\\{\boldsymbol {\hat {\theta }}}\\{\boldsymbol {\hat {\phi }}}\end{bmatrix}}}
So the time derivative becomes:
A
˙
=
r
^
(
A
˙
r
−
A
θ
θ
˙
−
A
ϕ
ϕ
˙
sin
θ
)
+
θ
^
(
A
˙
θ
+
A
r
θ
˙
−
A
ϕ
ϕ
˙
cos
θ
)
+
ϕ
^
(
A
˙
ϕ
+
A
r
ϕ
˙
sin
θ
+
A
ϕ
ϕ
˙
cos
θ
)
{\displaystyle \mathbf {\dot {A}} ={\boldsymbol {\hat {r}}}({\dot {A}}_{r}-A_{\theta }{\dot {\theta }}-A_{\phi }{\dot {\phi }}\sin \theta )+{\boldsymbol {\hat {\theta }}}({\dot {A}}_{\theta }+A_{r}{\dot {\theta }}-A_{\phi }{\dot {\phi }}\cos \theta )+{\boldsymbol {\hat {\phi }}}({\dot {A}}_{\phi }+A_{r}{\dot {\phi }}\sin \theta +A_{\phi }{\dot {\phi }}\cos \theta )}
Gradient, divergence, curl, and laplacian in spherical coordinates
Bearbeiten