Diskussion:Neutronenstern
Prima, ein paar Bilder zu diesem trockenen Thema. Bei dem Bild zum Pulsar habe ich kurz gestutzt. Der Kegel ist irgendwie als Hohlkegel dargestellt: Man sieht 2 Kreislinien an der Schnittfläche oben rechts und man schaut auf die innere gegenüberliegende Kegelinnenwand. Merkwürdig. Man könnte fast meinen, es sei nicht der Kegel zu einem Zeitpunkt, sondern seine gesamte Bahn während einer Umdrehung dargestellt. Der eigentliche Abstrahlkegel wäre dann sehr viel schmaler. Habe keine Ahnung hinsichtlich realistischer Winkel. Das was als Magnetachse bezeichnet ist, wäre dann die Drehachse und das, was als Drehachse bezeichnet ist, könnte man als Präzessionsachse interpretieren zu einer durch einen Partner provozierten Präzession, wenn die Drehachse nicht senkrecht auf der Bahnebene steht. Keine Ahnung, ob so was (oft) vorkommt. Andererseits ist die Beschriftung des Original-NASA-Bildes richtig übersetzt. Seltsam. Ferner geht der Pfeil Richtung Erde nicht genau durch den Mittelpunkt des Neutronensterns sonder ist eher parallel zu der einen Kegelmantelseite. Hat da ein NASA-Dilettant nachträglich rumgepfuscht und auch inhaltlich was falsch interpretiert? An sich ist das Bild ganz schön, und ich habe auf Anhieb auch kein besseres Bild im Internet gefunden. Könnens ja erst mal drin lassen, bis jemand was besseres findet.
Das Bild mit dem Neutronenstern mit Roten Riesen ist auch ganz schön. Man könnte sich überlegen, ob man noch 2 Jets reinmalen sollte.
Ein SF-Roman als Literaturzitat? Hm naja, taugt er denn was? --Wolfgangbeyer 23:07, 18. Mai 2004 (CEST)
- Zu dem Schemabild: So genau hatte ich mir den Kegel eigentlich gar nicht angeschaut, komisch sieht der schmale Kegelmantel jedoch schon aus - keine Ahnung wieviel Ahnung der NASA-Grafiker hatte ;-)
- Zu den Jets: Ich weiß nicht so recht, wie das Bild aussieht, wenn ich da anfange rumzumalen - aber wenn Du Lust hast, das ist auch ein NASA-Bild, also PD
- Zum SF-Roman: Als ich die Eintragung des Titels gesehen habe, war ich nahe dran es wieder zu löschen - aber dann hab ich doch erst mal etwas gegoogelt. Der Autor ist Physiker und auf mehreren Seiten fand ich die Betonung, dass ihm die physikalischen Korrektheit seiner Beschreibungen wichtiger ist als die Story selbst - keine Ahnung, was das in Bezug auf Leben auf einem Neutronenstern bedeuten soll. Das Buch selbst kenne ich allerdings nicht und kann es deshalb nicht beurteilen. -- srb 01:49, 19. Mai 2004 (CEST)
Exzellent?
Der Artikel vbfindet sich gerade in der Exzellenzdiskussion. Das finde ich viel zu früh! Die Physik ist noch nicht einmal richtig beschrieben. Es muss möglich sein, auch dem gebildeten Laien zu erklären, dass ein Neutronenstern immer allgemein-relativistisch zu beschreiben ist (die Zustandsgleichung ist NICHT die eines einfachen speziell-relativistischen entatrteten Gases). Das fehlt komplett. Und es sollte auch nicht unerwähnt bleiben, dass Neutronensterne nicht bei Typ I supernovae entstehen können und solche Dinge. Lesenswert mag der Artikel so ja sein, aber noch nicht exzellent.--CWitte ℵ1 16:44, 10. Jun 2005 (CEST)
Diskussion aus Kandidaten für exzellente Artikel
Neutronenstern 27. Mai
- pro Meiner Meinung nach ein prima Astronomieartikel und im Vergleich zum hochkomplizierten Thema ausreichend verständlich geschrieben. Bilder sind auch klasse. --Leipnizkeks 20:27, 27. Mai 2005 (CEST)
- pro: Guter Artikel, werde noch Kategorien ergänzen, ansonsten alles erwähnenswerte erwähnt. --Szs 22:51, 27. Mai 2005 (CEST)
- abwartend, interessant, die Darstellung erscheint jedoch etwas unübersichtlich.
Es erscheinen schon im Abschnitt „Entstehung“ vielfach vom eigentlichen Thema wegführenden Verweise und Details wie z.B. zum Schwarzen Loch, zum Weißen Zwerg etc, typisches Beispiel für dieses thematische Abirren ist der Satz „Alle Elemente unseres Universums, welche schwerer als Eisen sind, wurden in Supernovae erzeugt“, der hier nichts zur Erklärung des Neutronensterns beiträgt.
- Den Satz im Abschnitt „Magnetfeld“ "Die Massendichte, die einem derartigen Magnetfeld über seine Energiedichte in Kombination mit der Äquivalenz von Masse und Energie gemäß E=mc2 zugeordnet werden kann, liegt im Bereich einiger Dutzend g/cm3" kann ich nicht so recht zur Deckung bringen mit dem Eingangsabsatz in dem „eine extremen Dichte von etwa 10 hoch 12 kg/cm³ erwähnt werden.“ Sind das Schreibfehler oder unterschiedliche Erscheingungen?
- Es scheint, daß der Artikel insgesamt durch den Verzicht auf die Erwähnung solcher "tollen Nebensächlichkeiten" und die klarere Abgrenzung oder Zuordnung differierender Wertangaben übersichtlicher und schlüssiger werden könnte. -- WHell 10:40, 30. Mai 2005 (CEST)
- ad 1: einmal geht's um das Magnetfeld, dann um die Sternmaterie an sich. --Szs 11:38, 30. Mai 2005 (CEST)
abwartendcontra; Ein paar Kommentare/Fragen: Wäre es nicht besser das Wort Stern in der Einleitung zu ersetzen (kosmisches Objekt oder so ähnlich)? Auch der zweite Satz klingt bei Materieform etwas komisch. Kann man sie wirklich als die extremsten Objekte bezeichnen? Hat es einen Grund, dass bei Energieangaben immer die entsprechende Masse angegeben wird? Ansonsten scheint mir der Artikel umfassend und korrekt.--G 23:49, 30. Mai 2005 (CEST)
- Es gibt keinen geschichtlichen Teil (Finden der ersten N-sterne, erste Erklärungen).--G 12:35, 31. Mai 2005 (CEST)
- Ok, der Abschnitt ist da, aber für mich noch zu kurz. Einige Aussagen des Artikels sind auch noch nicht ganz klar: Bei Stabilität und P-Prinzip wird gesagt, dass der Sprossenabstand bei Verringerung des Sternvolumens wächst. Ich glaube nicht, dass allen ganz klar wird, was das bedeutet.--G 10:53, 11. Jun 2005 (CEST)
- contra - Für einen Kandidaten als exzellenten Artikel ist die Geschichte zu stichpunktartig aufgeführt - ich hätte gerne mehr. Auch sonst finde das umfangreiche Thema zu kurz angeschnitten und noch nicht verständlich genug erklärt. --Atamari 18:18, 6. Jun 2005 (CEST)
- contra - Lesenswert, aber nicht exzellent. Es wird z.B. nicht zwischen Supernova Typ I und II unterschieden, dere innere Aufbau ist nicht genau genug beschrieben (physikalische zu unpräzise) etc...--CWitte ℵ1 16:38, 10. Jun 2005 (CEST)
Hallo!
contra
Eine Reihe von Erklärungen in dem Artikel Neutronenstern sind entweder mißverständlich oder falsch:
Bezeichnet die Chandrasekar-Grenzmasse die Anfangsmasse eines Sterns oder die Masse seines Kerns? Ist die Neutrinoproduktion Ursache oder Folge der Sternkontraktion? Woher kommt die Energie für die Explosion der Supernova, aus dem Hüllenbrand? Was ist der Zeitrahmen vom Auftreten des Neutrinoschauers bis zum mechanischen Zerbersten des Sterns, Tage? Wie ist die Reihenfolge? Enstehung des Neutronensterns im Kern, Neutrinoproduktion, Leuchtkrafterhöhung der Supernova oder wie? Die Physik des Eisenkerns ist ziemlich umständlich erklärt! Der Abschnitt mit dem Magnetfeld des Neutronensterns gehört wohl eher in ein Kapitel Magnetar, oder? Magnetare werden doch als Ursache für Gammablitze gehandelt oder? Kann sein, das meine Kritik etwas kleinlich ist, aber eine ordendliche Erklärung von Entartung wäre schon notwendig. Sorry, der Artikel überzeugt mich nicht.
Gruß -- Andreas Werle 23:49, 18. Jun 2005 (CEST)
- Die Antworten vieler deiner Fragen gehören nach Supernova und nicht hier her. Die Magnetfelder von Neutronensterne sind durchaus erwähnenswert. Bei Magnetaren sind sie lediglich noch stärker. --Wolfgangbeyer 22:36, 8. Aug 2005 (CEST)
zum Schaubild Pulsar 7.8.05 Axel K
Erstmal Hallo, dies ist mein erster Beitrag bei Wikipedia - ich hoffe ich mache nich zu viel falsch:
Das Bildchen ist im Prinzip richtig. Durch die Neigungswinkel der Drehachse (des Neutronensterns zur Magnetachse, präzidiert ein Strahlungkegel um die Drehachse. Die Präzessionsperiode entspricht dann der auf der Erde beobachteten Radiopulsfrequenz der Radiobursts (bzw. wenn beobachtbar auch entsprechender Gamma- u Röntgenstrahlung sowied IR und sichtb. Strahlung). Die Pulsperioden liegen zwischen 0,0015 und 4,5 Sekunden, wobei die Pulslänge selbst nur etwa 5 % der Pulsdauer ausmacht. Die Emission erfolgt dabei in einem parallel zur Magnetfeldachse liegenden Kegel mit typischerweise 10-15 Grad Öffnungswinkel (hier fälschlicherweise mit 45° angedeutet). Wenn Magnetfeldachse und Rotationsachse schräg zueinander stehen, rotiert der Strahlungskegel mit dem Stern und streift wie der Strahl eines Leuchtturms durchs All. Die meisten Pulsare treffen die Erde natürlich nicht, da sie gerade nicht in Richtung Erde abstrahlen. Selbstverständlich müsste die Blickrichtung in Richtung Erde durch den Mittelpunkt des Neutronesterns gezeichnet sein. (ansonsten ist das aber auch in der englischen Bildbeschreibung so dargestellt.
Von Jets spricht man eigentlich nicht im Zusammhang von Pulsaren, hier habe wir ja quasi diesen Leuchtturmkegel, der rotiert. Jets sind Strahlenbündel die von Quasaren oder Radiogalaxien ausgesendet werden, meist Synchrotronstrahlung im Radiobereich oder seltener auch im Sichtbaren, sie entstehen durch Materieakkredation (quelle zB schwarzes Loch). Bei den Pulsaren wird die Synchrotrostrahlung allein durch das Magnetfeld und den dort befindlichen beschleunigten Elektronen und Ionen erzeugt.
--15:39, 7. Aug 2005 (CEST) Axel K
- Nur Mut ;-). Neue Diskussionsbeiträge bitte immer unten anfügen. Habe deinen mal dorthin verschoben. Und einfach mit der Zeichenfolge --~~~~ unterschreiben, die Wiki-Software macht daraus deinen Namen inkl. Datum und Uhrzeit. Habe aber Dein Anliegen nicht ganz verstanden. "Jet" kommt im Artikel nicht vor. Falls Du möchtest, dass die von dir aufgeführten Daten erwähnt werden sollten, dann würde ich eher den Artikel Pulsar empfehlen. Hier geht es ja um den Neutronenstern, d. h. es genügt, hier kurz auf Pulsare zu verweisen. --Wolfgangbeyer 22:36, 8. Aug 2005 (CEST)
Es ging mir nur um einen Beitrag zur Diskussion um das NASA-Bildchen und da ist im Zusammenhang mit den Strahlungkegeln von Jets geprochen worden. Ich wollte igentlcihniur aufzeigen, dass da Bild im Prinzip den Sachverhalt richtig darstellt, wenn auch kleien Schwächen vorhanden.
Noch 'ne Frage: Was ist zum beispierl mit den quasi identischen beiträgen der z.b. englischen wikipedia, aknn man deren beiträge nicht einfach übernehm oder verstößt das gegen das copyright?
--Axel K 01:31, 9. Aug 2005 (CEST) --~~~~
Neutronenstern
Lieber Wolfgang!
Nochmal zu Verdeutlichung einige Hinweise zu meinen obigen Fragen. Sie beziehen sich auf Aussagen aus dem Artikel Neutronenstern. Die Antworten weiß ich selber, aber nicht der Artikel ...
Frage: Bezeichnet die Chandrasekar-Grenzmasse die Anfangsmasse eines Sterns oder die Masse seines Kerns?
Ausschnitt aus dem Artikel:
Neutronensterne entstehen im Rahmen einer Supernova, wie sie beispielsweise beim Kollaps des Zentralbereiches eines Sterns mit einer Masse zwischen 1,4 und etwa 3 Sonnenmassen stattfindet (siehe Chandrasekhar-Grenze). Liegt die Masse darüber, entsteht ein Schwarzes Loch, liegt sie darunter, erfolgt keine Supernova-Explosion, sondern es entwickelt sich ein Weißer Zwerg.
Richtige Antwort:
Die Chandrasekar-Grenzmasse bezieht sich auf stellare Kerne und nicht auf die Anfangsmasse eines Sterns. Die Anfangsmasse eines Sterns muß mindestens 8 solare Massen betragen, damit sich der Stern zur Supernova entwickeln kann. Solche Sterne können C/O-Kerne haben deren Masse größer als 1.4 solare Massen betragen. So ein Kern kann einen Kohlenstoff-Flash induzieren, dann gibts eine Supernova Typ I.
Neutronensterne haben ebenfalls eine Grenzmasse. Oberhalb solcher Grenzmasse können sie zu schwarzen Löchern kollabieren. Die Grenzmasse für die Entstehung eines schwarzen Lochs aus einen Neutronenstern ist ohne die Berücksichtigung der relativistischen Entartung seiner Materie etwas mehr als 5 solare Massen. Berücksichtigt man die relativistischen Effekte, verkleinert sich die Grenzmasse, allerdings sind die errechneten Werte unsicher. Deshalb gibt man im allgemeinen nur einen Bereich von ca 1.5 bis 3 solare Massen als Grenzmasse für die Entstehung eines schwarzen Lochs aus einem Neutronenstern an.
Frage: Ist die Neutrinoproduktion Ursache oder Folge der Sternkontraktion?
Aussagen in dem Artikel (Markierung in Fett von mir):
Der Stern kollabiert, wobei der Kern stark komprimiert wird. Dabei treten extrem starke Kräfte auf, die bewirken, dass die Elektronen in die Atomkerne gepresst werden und sich Protonen und Elektronen zu Neutronen verbinden. Auch nach diesem Prozess schrumpft der Kern noch weiter, bis die Neutronen einen "Entartungsdruck" aufbauen, der die weitere Kontraktion stoppt. Dabei wird ein großer Teil der beim Kollaps freigesetzten Gravitationsenergie (also potentielle Energie) durch die Emission von Neutrinos frei. Diese verlassen den Stern ohne nennenswerte Wechselwirkung mit den äußeren Schichten des Sterns.
Richtige Antwort:
Je mehr Brennphasen ein massereicher Stern durchläuft, umso größer wird der Anteil der Neutrinos an der Energieproduktion des Sterns. Da Neutrinos aber nicht zum hydrostatischen Gleichgewicht eines Sterns beitragen führt die hohe Neutrinoproduktion zu einer Kühlung des Kerns und damit zu einer weiteren Kontraktion mit der Folge einer Druckerhöhung. Die zunehmende Neutrinoproduktion ist also die Ursache der Kontraktion massereicher Sterne.
Mißverständliche Aussagen: Der Stern kollabiert, wobei der Kern stark komprimiert wird.
Das ist natürlich Murks. Aufgrund der hohen Temperatur im Eisenkern kommt es zur Photodesintegration der Eisenatome. Dabei geht der Strahlungsdruck im Innern des Sterns schlagartig gegen Null. Deshalb kollabiert der Stern, aus keinem anderen Grund.
usw...
Meine Fragen sollten die Autoren des Artikels Neutronenstern zur Klärung aufforden. Da ich mich fachlich nicht berufen fühle werd ich das nicht selber machen. Aber meckern tu ich, sorry.
Gruß -- Andreas Werle 00:04, 9. Aug 2005 (CEST)
- Hallo Andreas, habe deinen an mich gerichteten Kommentar an mich erst jetzt entdeckt. Nur zu mit der Kritik. Er trifft einen Absatz, der gar nicht von mir ist, und den ich auch schon die ganze Zeit für überarbeitungswürdig gehalten habe. Ich fürchte nur, ich werde so rasch nicht dazu kommen. Es darf auch gerne ein anderer ;-). Wir sollten uns in diesem Abschnitt auch kürzer fassen und die Details dem Artikel Supernova überlassen. --Wolfgangbeyer 14:29, 3. Okt 2005 (CEST)
Lesenswert-Diskussion, Oktober 2005
Als Neutronenstern bezeichnet man in der Astronomie ein kosmisches Objekt mit einem Durchmesser von typischerweise 20 km und einer Masse zwischen 1,4 und 3 Sonnenmassen. Er steht am Ende seiner Sternentwicklung und stellt damit das Endstadium eines Sterns einer bestimmten Gewichtsklasse dar. Er besteht aus einer besonderen Materieform von Neutronen mit einer extremen Dichte von etwa 1012 kg/cm3 im Zentrum und mehr. Eine Portion dieser Materie von der Größe eines Stecknadelkopfes wiegt damit über 1.000.000 Tonnen, so viel wie ein Wasserwürfel mit 100 m Kantenlänge. Man kann einen Neutronenstern als gigantischen Atomkern ansehen, der durch einen enorm großen Gravitationsdruck stabilisiert wird. Neben dieser Neutronenmaterie könnte im Zentrum auch ein Kern aus einem Quark-Gluon-Plasma vorliegen. Ein solches hypothetisches Gebilde nennt man Quarkstern. Neutronensterne sind nicht nur hinsichtlich ihrer Dichte sondern auch hinsichtlich ihres Magnetfeldes, ihrer Temperatur und weiterer physikalischer Größen die extremsten Objekte im Kosmos, die man überhaupt kennt
Antifaschist 666 00:24, 27. Sep 2005 (CEST)
ProAndreas Werle 10:11, 27. Sep 2005 (CEST)
Kontra In dem Artikel sind die sachlichen Fehler und Unklarheiten immer noch nicht beseitigt (vgl. meinen Hinweis in der Diskussionsseite). Der Artikel ist eine unfertige Baustelle. --- G 14:58, 2. Okt 2005 (CEST) Kontra--