Diskussion:Kamineffekt

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 21. April 2011 um 00:11 Uhr durch Röhrender Elch (Diskussion | Beiträge) (Klassischer Kamin). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 14 Jahren von Röhrender Elch in Abschnitt Klassischer Kamin

Einfluß auf die Rettung

In welcher Weise kann der Kamineffekt bei der Rettung von Menschen nützlich sein? --Besserwissi 14:08, 9. Sep 2005 (CEST)

Der Rauch zieht nach oben über Rauchabzugsklappen ab. Hadhuey 00:08, 19. Dez 2005 (CET)
Das ist richtig, aber nur, wenn man diese erst öffnet, wenn der Brand schon bekämpft und isoliert wird, ansonsten wurde sich der Brand weiter ausbreiten... --Linuxuser92 17:17, 8. Feb. 2009 (CET)Beantworten

Kamineffekt ist falsch beschrieben!!!

Hallo, der Kamineffekt ist nicht etwa durch Wärme - das ist nur ein sekundärer Nebeneffekt - sondern durch die Tatsache, dass warme Luft leichter ist als kalte und deshalb warme Luft nach oben steigt und kalte nach unten fällt. Vermutlich sogar eine Folge der molekularen, braunschen Bewegung.

Vielleicht mags mal jemand ändern. --84.63.9.70 06:47, 21. Sep. 2007 (CEST)Beantworten

Druckverlauf im Kamin

kennt sich damit jemand aus? Und hat Kondensationswärme hier nen Einfluß? H. Daniels Physikbuch kennt ein bischen dazu. -- Kyber 21:11, 18. Mai 2008 (CEST)Beantworten

Den Kamineffekt gibt es auch abseits der Abgastechnik

In streng hirachischen Organisationen kommt es im Informationsfluss zum Kamineffekt. --Rainhelt 15:45, 21. Juli 2008 (CEST)

Was soll das denn sein? Bitte etwas genauer mit Belegen... --Thhart 10:47, 2. Dez. 2010 (CET)Beantworten

Der Kamineffekt, mal aus physikalischer Sicht

das mit dem kamineffekt scheint ja wirklich eine ganz verzwickte sache zu sein.

hier mein vorschlag, der hoffentlich den physikalischen gegebenheiten näher kommt. Falls diese Version Akzeptanz findet, kann sie ja in den Hauptartikel übernommen werden.


Kamineffekt, aufs Neue:

I. Grundsätzliche qualitative Überlegungen

also: ein Kamin kann nur ziehen, wenn

1. das Gas im Kamin (Luft, Rauchgas) leichter ist als außerhalb des Kamins.

2. am einfachsten wird Gas leichter, wenn man es erwärmt. Kann sich das Gas im Kamin über die Kaminlänge zu schnell zu stark abkühlen, dann is nix mit Zug oder zu wenig (daher brauchen auch die Brennwertgeräte eigene Gebläse, um die absichtlich abgekühlten Rauchgase nach außen zu befördern). Auch dann nicht, wenn die Luft außerhalb des Kamins wärmer ist als im Kaminrohr.

3. der Sog, also die Druckdifferenz, die die Kamingase aus dem Kamin zieht, ist umso höher, je länger das Kaminrohr ist und je größer die Temperaturdifferenz zwischen Kamingas und Außenluft ist. Ist das Rohr zu lang, die Temperaturdifferenz zu groß, wird der Kaminzug u.u. zu groß, daher die Bemühungen, die jeweils richtige Kaminrohrlänge bezw. die Steuerung der Luftzufuhr am Ofen zu ermitteln, sonst klappt’s entweder gar nicht, oder zu viel Wärme geht oben raus.

4. die physikalischen Zusammenhänge des Kamineffekts werden durch die sog. barometrische Höhenformel beschrieben, wobei im einfachsten Falle davon abgesehen wird, daß die Temperatur der Luft in der Atmosphäre mit der Höhe abnimmt (es sind normalerweise ca. 1°C/100m, trockenadiabat, also ohne Dampfkondensation), was also bei den normalen Kaminlängen nicht ins Gewicht fällt.

II. Diese einfache barometrische Höhenformel lautet

p(h) = p(unten) * (exp (-(rho * g * h/p(unten))) (g = Erdbeschleunigung)

und bedeutet: mit der Höhe h über der Feuerstelle nimmt der Luftdruck p(h) außerhalb des Kamins, also in der Außenluft exponentiell ab, wobei wegen der höheren Dichte (rho) der kalten Luft die Druckabnahme ca. 1,3hPa/10m beträgt (Luft wiegt ca. 1,3kg/cbm), und das ist ca. 1,3mB/10m. Im Kamin ist das Rauchgas wegen der höheren Temperatur leichter, bei ca.140°C hat es eine Dichte von ca. 2/3 der Außenluft also ca. 0,8kg/cbm. und mit dieser Dichte nimmt der Druck des Rauchgases im Kamin – ebenso exponentiell - weniger schnell ab, nämlich im Beispielfall mit ca. 0,8mB/10m. Der Sog, der die Rauchgase aus dem Kamin ziehen soll (und soweit sonst alles stimmt auch zieht) beträgt also ca. 0,5mB/10m. bei einem Kaminrohr mit nur 5m Länge ist dieser Sog nur halb so groß also weniger als 0,3mB. Und mit diesem Druckunterschied – am oberen Ende des 5m-Kamins herrscht also im Kamin ein um ca. 0,3mB höherer Druck als unmittelbar oberhalb des Kamins in der kalten Außenluft – wird das Gas im Kamin nach oben/außen aus dem Kaminrohr gezogen. Dies natürlich unter der vereinfachenden Annahme, daß unten an der Feuerstelle der Außendruck herrscht, was die Wirklichkeit nicht vollständig wiedergibt, da sich der Druckunterschied zur kalten Außenluft(im Beispiel für einen 10m-Kamin mit 0,5mB berechnet für den oberen Kaminaustritt) über den ganzen Kamin verteilt und damit unten kräftig nachsaugen kann.

III. Störgrößen

Da diese Werte reichlich klein erscheinen, können natürlich andere Störgrößen durchaus Probleme bereiten, wie z.B. zu warme Außenluft, anfänglich zu kalter Kamin, zu großer Kaminquerschnitt, zu starke Wärmeaufnahme der Kamininnenwand (dann auch oft mit Kondensation des Verbrennungsprodukts Wasserdampf), Winddruck je nach Windrichtung und Dachorientierung und Kaminhöhe im Verhältnis zur Firsthöhe, Gestaltung der Austrittsöffnung nach oben, zu gasdichte Räume, die keine Frischluft von außen zulassen, oder gar Lüftungsventilatoren in Bad und Küche, die wegen stärkerer Saugwirkung die Rauchgase wieder aus dem Kamin zurücksaugen können usw usw.

IV. Nebenluft im Kamin

Im Normalbetrieb eines Kamins herrscht also oberhalb des Kaminrohrs immer ein Unterdruck, der das Gas aus dem Kaminrohr zieht, und das aus dem oberen Kaminende nach oben abgesogene Gas wird unten an der Feuerstelle nachgesogen. Daher tritt auch bei Undichtigkeiten kein Rauchgas nach außen, z.B. in Räume des Gebäudes, es wird ja nach oben abgesogen. Die Undichtigkeiten dürfen aber nicht zu groß werden, weil sonst der Sog an der Feuerstelle zu gering werden kann. Bei Gasheizthermen wird diese Nebenluft sehr gezielt eingesetzt, um die Anlage energetisch zu optimieren, die Temperatur im Kamin gezielt zu senken, um den Sog und damit die Strömungsgeschwindigkeit zu verringern. Der Bernoulli-Effekt mit seinem Unterdruck spielt dann eine Rolle, wenn die Gase im Kamin tatsächlich schnell sind, da dieser Effekt von der Strömungsgeschwindigkeit (der Kamineffekt dagegen von der Kaminhöhe und dem Dichteunterschied Innen/Außen) abhängt, und die will man nicht zu hoch, sonst wird zu viel Heizenergie verschwendet.

V. Kamine früher

Kamine in alten Gebäuden, bei denen die Feuerstellen früher eigentlich immer brannten, wenn es nur zum Kochen war, hatten immer Zug, einfach weil der Kamin nicht kalt wurde. und war er doch mal kalt, dann hat der Feuermacher als erstes eine lockere Zeitung angesteckt, damit die Kaminluft von unten erwärmt und wenn nicht zu starker Wind war, oder der Kamin total gefroren, dann kam der Kaminzug auch schnell in Gang, damals hat man aber auch nicht so viel Wert auf die energetische Optimierung gelegt, es ging nämlich verdammt viel Heizenergie zum Schornstein hinaus.

VI. Kamineffekt bei der Kerzenflamme

Übrigens brennt auch eine Kerze wegen des Kamineffekts: die Flamme erzeugt heißes Rauchgas, dieses wird entsprechend leicht, es steigt auf, mit der Höhe sinkt der Druck des Rauchgases langsamer als der der umgebenden Luft, es entsteht der "Kaminsog" auch ohne Kamin, die Rauchgase werden in einem engen Gaskanal nach oben gesogen, bei zu langem Docht sehr gut zu sehen, rußt halt. Erst wenn das Kerzenrauchgas ca. 30bis50cm über der flamme so viel kälter geworden ist, dass der Sog aufhört, bilden sich Wirbel. Aus den gleichen Günden brennt eine Kerze bei Schwerelosigkeit nicht, es gibt halt kein oben und unten, die Astronauten werden auf Wachskerzen an ihrem Weihnachtsbaum schon verzichten müssen.

VII. Kamineffekt bei Wirbelstümen

Nach dem gleichen Prinzip entstehen z.B. auch die tropischen Wirbelstürme, wie Hurrikane und Taifune, wobei hier die entscheidende Energiezufuhr, also zusätzliche Aufheizung der aufsteigenden Gase im "Kamin" durch die Kondensation des Wasserdampfs die Hauptursache für den Kaminsog ist: die stark wasserdampfhaltige Luft über der Meeresoberfläche wird im entstehenden Kamin nach oben gerissen und bei Abkühlung auf den Taupunkt kondensiert der Wasserdampf, was den Sog erst dramatisch entstehen läßt, weil jetzt die feuchtadiabatische Temperaturabnahme mit der Höhe von nur ca. 0,6°C einsetzt. Die aufwärts strebenden Luftmassen saugen von außen aus bis zu mehreren hundert km Entfernung feuchtigkeitsschwangere Luft nach, die ihrerseits durch Kugelgestalt und Rotation der Erde wegen der Coriolisbeschleunigung in Drehung versetzt werden. und weil diese riesigen rotierenden Luftmassen zum Zentrum hingesogen werden, kommt jetzt der Impulserhaltungssatz ins Spiel, der besagt, daß mit Abnahme der Entfernung vom Zentrum die Geschwindigkeit quadratisch zunimmt, was sich auch die pirouettendrehende Eiskunstläuferin zunutze macht, indem sie die Arme an den Körper zieht - daher die enormen zerstörerischen Windstärken im Zentrum des Sturms (das dann wieder ruhige Hurricane-Auge entsteht dadurch, weil das Hochsaugen der Luftmassen so stark wird, daß die Luft gar nicht bis zur Mitte dringt, die Zentrifugalkraft wird ja auch immer stärker. bei Tornados mit noch viel höheren Windgeschwindigkeiten ist der Aufwindkanal viel kleiner). Bei zu geringer Verdampfung, also Oberflächentemperatur des Meerwassers unter ca. 26,5°C, oder nach „landfall“ (der Hurricane hat dann kein Wasser mehr unter sich, das die Dampfenergie nachliefert) bricht die Gewalt des Sturms ziemlich rasch in sich zusammen.

VIII. Kühltürme bei Wärmekraftwerken

Bei Wärmekraftwerken muß aus thermodynamischen Gründen die Wärmeenergie am unteren Temperaturniveau nach außen abgeführt werden. Und weil dieses untere Temperaturniveau zur Erzielung eines noch akzeptablen Wirkungsgrades der Gesamtanlage möglichst tief liegen sollte, müssen die Kühltürme mit Naturzug aufgrund des Kamineffekts reichlich hoch gebaut werden, ca. 200m. Die den Kaminsog auslösende Temperaturdifferenz zwischen innen und außen am Kühlturm liegt also in ungünstigen Fällen (hohe Sommertemperaturen) bei vielleicht gerade mal 10 bis 20°C, was bei einer Höhe von 200m einen Sog von ca. 1mB/200m erzeugt. Bei solchen Anlagen geht es immerhin um mehrere GW Abwärmeleistung, die in die Luft abgegeben werden muß, daher die gigantischen Ausmaße.

IX. Aufwindkraftwerke

Die Aufwindkraftwerke arbeiten natürlich auch mit dem Kamineffekt. Die auf einer riesigen Fläche von mehreren Quadratkilometern unter Glas oder Plastik von der Sonne absorbierte Strahlungswärme, z.B. in Afrika, möchte natürlich irgendwo aufsteigen und dies kann sie im Aufwindkamin. Wenn der ausreichend hoch ist, bei großtechnischen Anlagen denkt man an ca. 1km Höhe, dann entsteht bei einer Lufttemperaturdifferenz innen/außen von ca. 40°C ein Sog von ca. 15mB (das ist allerdings eine sehr grobe Schätzung), und das ist wahrlich gewaltig, wenn man die Wetterverhältnisse in Tiefdruckgebieten anschaut, die solche Druckdifferenzen erst nach hunderten von km aufbauen, und welche Energien solche lächerlich erscheinenden Druckdifferenzen im Wettergeschehen freisetzen können, ist bekannt. Ist dann der Querschnitt des Aufwindkamins richtig dimensioniert, dann werden riesige Luftmassen nach oben gerissen, die die turbinen im unteren teil es Turms antreiben. Und dies nicht nur zu Sonnenscheinzeiten, sondern so lange, wie die im Boden gespeicherte Wärme im Laufe eines Abends die zum Zentrum strömende Luft noch erwärmen kann.


Quelle: zur barometrischen Höhenformel: Gerthsen, Physik, Springer-Verlag 1989

--Han-ri 08:30, 16. Dez. 2008 (CET)Beantworten


Ich finde das richtig gut, das könnte auf jeden Fall in den Artikel rein. Denn so, wie es jetzt dort steht, ist es auf jeden Fall falsch. Laut der Definition im Artikel bräuchte man für den Kamineffekt ein offenes Feuer, was aber nicht der Fall ist (siehe Thermikkraftwerk. Nur bleibt bei mir noch eine Frage offen: Warum nimmt der Druck warmer Luft nicht so schnell ab, wie Druck kalter Luft? Ansonsten sehr gut umschrieben. Man könnte vielleicht noch das Luftwirbelkraftwerk kurz erwähnen.

--Linuxuser92 17:13, 8. Feb. 2009 (CET)Beantworten

Ich finde das gar nicht gut! Der Kamineffekt hat nämlich nichts mit dem Luftdruckunterschied zwischen dem Boden und der Spitze des Kamins zu tun. Der Kamineffekt beruht wie im Artikel angegeben auf der Auftriebskraft. Wenn ich einen Kubikmeter Luft (1,2 kg/m³ also ca. 252g Sauerstoff und 948 g Stickstoff) von ca. 300 °K zur Verbrennung von Kohlenstoff benutze werden dabei 94,5 g Kohlenstoff benötigt. Es entsteht ein Gemisch aus Kohlenstoffdioxid und Stickstoff. Bei einer Verbrennungstemperatur von 1000 °K nimmt dieses Gasgemisch ein Volumen von ca. 3,5 m³ ein und hat eine Dichte von ca. 0,37 kg/m³. D.h. Die Verbrennungsgase verdrängen eine Masse von 4,2 kg Luft was eine Auftriebskraft von ca. 28,5 Newton ergibt. Wenn man sich jetzt einen hohen Kamin baut und dafür sorgt, daß die Abgase im Kamin nicht abkühlen dann zieht der richtig ordentlich. 212.122.61.138 17:27, 28. Apr. 2010 (CEST)Beantworten

Herkunft der Bezeichnung

Kommt der Name wirklich vom Kamin im Sinne von Feuerstelle und nicht von Kamin im Sinne von Schornstein? Der KE tritt doch bei allen Schornsteinen auf, egal ob unten ein Kamin ist oder etwas anderes! --Röhrender Elch 20:21, 2. Jan. 2010 (CET)Beantworten

Umgedrehter Effekt

Ich habe den ganzen Artikel heute grundlegend überarbeitet und versucht neu zu strukturieren. Insbesondere fand ich es wichtig die Einseitigkeit der Strömungsrichtung aufzuheben. Für sonstige Hinweise und Kritiken bin ich offen und gerne bereit einzuarbeiten. -- Thhart 14:25, 18. Dez. 2010 (CET)Beantworten

Ich bin nicht ganz glücklich mit der neuen Einleitung. Ja, es gibt den umgekehrten Effekt, und er sollte auch erwähnt werden, da er aber in der Praxis sehr viel seltener anzutreffen ist, tritt er in seiner Bedeutung hinter dem "normalen" Kamineffekt zurück. Auch dies sollte im Artikel zum Ausdruck kommen. Konkret habe ich mit folgenden Formulierungen ein Problem:
  • "Temperaturunterschiede in der Luft erzeugen einen Luftstrom, der Luft von der warmen Schicht hin zur kalten Schicht transportiert." ← Dies stimmt erstens nur, wenn die warme Schicht unter der kalten Schicht liegt und zweitens finde ich den Begriff "Schicht" hier irreführend, da er eine (groß-)flächige Ausbreitung suggeriert. Beispielsweise im klassischen Kamin, der dem Effekt den Namen gab, liegt die heiße Luft aber nicht als flächige Schicht, sondern nur sehr lokal begrenzt im Feuer vor. Die Umgebungsluft, bei der man von Schichten sprechen kann, ist unten ebenso kalt wie oben, was den Auftrieb und damit den Kamineffekt sogar noch verstärkt!
  • "Warme Luft hat eine geringere Dichte als kalte Luft, hierdurch entsteht ein Luftaustausch." ← Wie gesagt: Luftaustausch entsteht nur, wenn die warme Luft unten ist. Den Begriff "Luftaustausch" finde ich hier etwas zu schwach; das könnte auch Diffusion sein, keine gerichtete Strömung, wie sie durch den Kamin erzeugt wird. Außerdem vermisse ich den Schlüsselbegriff Auftrieb. Auch beim umgekehrten Effekt ist Auftrieb die Ursache der Strömung, nur daß er außerhalb des Kamins wirkt.
  • "Entgegen der allgemeinen Vorstellung gibt es Kamineffekte in beide Richtungen, ..." ← Hier unterstellst Du dem Leser eine begrenzte Vorstellung, die vielleicht so nicht vorliegt. Der Satz gehört abgeschwächt. In diesem Zusammenhang sollte, wie eingangs gesagt, zum Ausdruck kommen, daß der Fall mit der Aufwärtsströmung im Schacht den Normalfall darstellt.
Ansonsten gute Ergänzungen zum Artikel; noch ein wenig an den Formulierungen feilen, dann haben wir eine echte Verbesserung des Artikels. Danke! --TETRIS L 10:58, 21. Dez. 2010 (CET)Beantworten
Danke für die Anregungen, ich habe etwas geglättet und die Formulierungen verfeinert. -- Thhart 19:25, 1. Jan. 2011 (CET)Beantworten

Klassischer Kamin

Was ist ein Klassischer Kamin? --Röhrender Elch 22:41, 20. Dez. 2010 (CET)Beantworten

Mein Ansinnen war, den alten eigentlichen Kamin als Bauwerk um eine Feuerungsstelle als Begriffsgeber herauszustellen und diesen als klassisch bezeichnet. Ich denke Kamine gibt es heute in vielfältiger Form. Ich habe es etwas zurückgenommen, aber auf klassisch noch nicht ganz verzichtet, vielleicht hast Du ja eine konzeptionelle Gegenidee? -- Thhart 19:30, 1. Jan. 2011 (CET)Beantworten
Ich vermute, dass die Bezeichnung (kein Begriff!) nicht vom Kamin im Sinne von Feuerstelle, sondern vom Kamin im Sinne von Schornstein kommt; vgl. Diskussion:Kamineffekt#Herkunft_der_Bezeichnung --Röhrender Elch 19:51, 19. Apr. 2011 (CEST)Beantworten