Glasfaserverstärkter Kunststoff

Faser-Kunststoff-Verbund aus einem Kunststoff und Glasfasern
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 18. August 2005 um 13:35 Uhr durch 217.6.211.115 (Diskussion). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Glasfaserverstärkter Kunststoff, kurz GFK, ist ein Faserverbundwerkstoff aus einem Kunststoff (z. B. Polyesterharz, Epoxidharz oder Polyamid) und Glasfasern.

GFK ist auch unter der Bezeichnung Fiberglas bekannt. Fiber kommt hier aus dem Englischen (fibre, amerikanisch: fiber) und bedeutet Faser. Er ist der am häufigsten eingesetzte langfaserverstärkte Kunststoff.

Klassifizierung von glasfaserverstärktem Kunststoff

Man klassifiziert glasfaserverstärkte Kunststoffe anhand der Länge der eingesetzten Verstärkungsfasern oder anhand des verwendeten Matrixsystems. Die Grenzen der Einteilung nach Faserlänge sind fließend. Sie orientieren sich hauptsächlich am Anwendungszweck.

Einteilung nach der Faserlänge

Kurzfasern L=0,1 bis 1mm

Kurzfasern werden in der Spritzgusstechnik eingesetzt und können direkt mit einem Extruder verarbeitet werden. Es existieren thermoplastische Granulate die bereits mit einem bestimmten Faservolumenanteil bzw. Fasermassenanteil mit Kurzfasern versehen wurden.

Langfasern L=1 bis 50mm

Langfasern können ebenfalls noch in Extrudern verarbeitet werden. Sie finden im großen Umfang beim der Faserspritzen Anwendung. Langfasern werden häufig Duroplasten als Füllstoff zugemischt.

Endlosfasern L>50mm

Endlosfasern werden als Rovings oder Gewebe in glasfaserverstärkten Kunststoffen eingesetzt. Bauteile mit Endlosfasern erzielen die höchsten Steifigkeits- und Festigkeitswerte.


Einteilung nach dem Matrixsystem

Grundsätzlich werden glasfaserverstärkte Kunststoffe mit thermoplastischer (Thermoplast) und duroplastischer (Duroplast) Matrix unterschieden. Für jeden Matrixtyp werden die Glasfasern mit einem speziellen Überzug, der Schlichte, versehen. Die Schlichte hilft, die Haftung zwischen Matrix und Faser herzustellen. Fasern mit einer Expoidschlichte (Silanschlichte) sind z.B. nur eingeschränkt in Thermoplasten einsetzbar.

Thermoplastische Matrix

Als Matrix sind grundsätzlich alle gängigen Thermoplasten verwendbar. Glasfaserverstärkte Kunststoffe mit einer thermoplastischen Matrix können nachträglich umgeformt oder verschweißt werden. Nach dem Abkühlen der Matrix sind glasfaserverstärkte Kunststoffe mit thermoplastischer Matrix einsatzbereit. Sie erweichen jedoch bei erhöhter Temperatur. Mit zunehmendem Glasgehalt sinkt ihre Kriechneigung. Als thermoplastische Werkstoffe bei hohen Temperaturen eignen sich z.B.:

Duroplastische Matrix

Als Matrix kommen hauptsächlich die folgenden Harze zur Anwendung:

Glasfaserverstärkte Kunststoffe mit duroplastischer Matrix können nach dem Aushärten, bzw. Vernetzen, der Matrix nicht mehr umgeformt werden. Sie weisen jedoch einen hohen Temperatureinsatzbereich auf. Dies gilt besonders für heißhärtende Systeme, die unter hohen Temperaturen ausgehärtet werden. Die Temperatureinsatzgrenze wird durch die Lage der Glasübergangstemperatur bestimmt. Glasfaserverstärkte Kunststoffe mit duroplastischer Matrix weisen meist die höchsten Festigkeiten auf.

Elastomere Matrix

Als typische Vertreter von Elastomeren als Matrix in glasfaservertärkten Kunststoffen sind Gummi und Polyurethan (PU) zu nennen. Elastomere kommen, aufgrund ihrer geringen Steifigkeit, nicht in Strukturbauteilen zu Einsatz. Eine Ausnahme bilden schlaufenförmige Bauteile wie Keil- oder Zahnriemen.

Wahl eines Matrixsystems

Die Wahl des Matrixsystems entscheidet über die Einsatzgrenzen des glasfaserverstärkten Kunststoffs. Neben den mechanischen Eigenschaften der Matrix z.B. des Elastizitätsmoduls gibt es eine Reihe von weiteren Kriterien:

Neben den reinen Faserhalbzeugen (Gewebe, Vliese usw.) existieren eine Reihe von vorimprägnierten Halbzeugen. Diese Halbzeuge liegen meist in Platten-, Band- oder Strangform vor.

thermoplastische Halbzeuge

GMT bedeutet Glasmatten verstärkter Thermoplast. Bei der Herstellung werden Glasfasergewebe oder Glasvliese in Verbindung mit Thermoplasten (meist PP) zu Halbzeugen verarbeitet. Dies Halbzeuge können nach dem erwärmen durch Pressen weiterverarbeitet werden.

LFT bedeutet Langlasfaser verstärktes Thermoplast. Bei dem G-LFT Verfahren werden lange Fasern in Granulatform (PP Matrix) aus einem offenen Extruder direkt in eine Pressform gebracht und umgeformt. Beim D-LFT Verfahren wird in einem Extruder die Matrix (meist PP) plastifiziert und in einem Mischer mit auf Länge gekürzten Endlosfasern vermengt. Das glasfaserhaltige Plastifikat wir dann in Form gepresst.

duroplastische Halbzeuge

SMC (Sheet Moulding Compound) besteht aus Kurz- und Langfasern. Es liegt als Plattenware vor und wird im Heißpressverfahren verarbeitet. Zuschlagstoffe verhindern das Ankleben der Matrix an Werkzeugen und machen das Halbzeug so handhabbar. Als Matrix findet häufig ein ungesättigtes Polyesterharz (UP) Anwendung. Ist bei dem Bauteil eine hohe Schlagzähigkeit gefordert, werden auch Vinylesterharze (VE) verwendet. Andere Matrixsysteme existieren ebenfalls. Die Aushärtung des glasfaserverstärkten Kunststoffs erfolgt durch erhöhte Temperatur und gegebenenfalls zusätzlichen Druck.

BMC (Bulk Moulding Compound) besteht aus Kurz- und Langfasern. Es liegt als teigige, formlose Masse vor. Die Zusammensetzung ähnelt der von SMC. Die Aushärtung erfolgt wie bei SMC.

Prepregs (Preimpregnated Fibers) bestehen aus Endlosfasern. Prepregs werden meist als bandförmige Ware aufgewickelt geliefert. Die Endlosfasern können als unidirektionale Bänder (UD-Bänder), Gewebebänder oder Multiaxialgelege im Prepreg vorliegen. Die Aushärtung erfolgt wie bei SMC und BMC.


typische Bauteile

kurz- und langfaserverstärkte Bauteile

Kurzfaserverstärkte Bauteile finden vor allem Verwendung als Verkleidungen, oder werden wegen der guten Formbarkeit und großen Gestaltungsfreiheit hergestellt. Kurzfaserverstärkte Bauteile weisen meist ein quasiisotropes Verhalten auf, da die Kurzfasern zufällig verteilt vorliegen. Eine schwach ausgeprägte Orthotropie kann beim Spritzguss von kurzfaserverstärkten Thermoplasten entstehen. Die Fasern orientieren sich dabei entlang der Fließlinien. Die Beimischung von Kurzglasfasern zu Thermoplasten verbessert deren Steifigkeit, Festigkeit und insbesondere deren Verhalten bei hohen Temperaturen. Das Kriechen kurzfaserverstärkter Thermoplaste ist geringer als die des Grundmaterials.

Endlosfaserverstärkte Bauteile

Endlosfaserverstärkte Bauteile werden mit definierten Materialeigenschaften hergestellt. Immer häufiger finden sie Verwendung im Leichtbau.

Einsatzbereich

Spoiler für Autos, Ölwannen für Nutzfahrzeuge, Zugverkleidungen, Kühlwaggons, Rotorblätter für Hubschrauber und Windenergieanlagen, Sportboote, Caravans, Segelflugzeuge, Zeltgestänge bis hin zu Fußgängerbrücken, Leuchttürme oder Chemischen Anlagen und Werbe- bzw Dekorationsfiguren


Siehe auch

Faserverbundwerkstoff