Mittelwert

Zahl, die nach einer bestimmten Rechenvorschrift ermittelt wird
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 12. Februar 2011 um 20:12 Uhr durch WikitanvirBot (Diskussion | Beiträge) (r2.7.1) (Bot: Ändere: eu:Batezbesteko). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Mittelwerte (kurz auch nur: Mittel, in der Statistik oft auch: Durchschnitt [statt: arithmetisches Mittel]) treten in der Mathematik und insbesondere in der Statistik in inhaltlich unterschiedlichen Kontexten auf.

Allgemein gilt, dass jedem Mittelwert eine Vorschrift zugrunde liegt, mit der man aus zwei Zahlen eine weitere berechnet, die zwischen den beiden gegebenen liegt.

In der Statistik ist ein Mittelwert ein so genannter Lageparameter einer Häufigkeits- oder Wahrscheinlichkeitsverteilung, der die Lage der Elemente einer Stichprobe oder Grundgesamtheit in Bezug auf die Messskala beschreibt.

Definitionen der bekanntesten und wichtigsten Mittelwerte

Im Folgenden seien   gegebene reelle Zahlen, in der Statistik etwa Messwerte, deren Mittelwert berechnet werden soll.

Mittelwert Definition[1]
Modus Ausprägung mit höchster Häufigkeit
Median Sofern   sortiert sind:

 

Arithmetisches Mittel  
Geometrisches Mittel  
Harmonisches Mittel  
Quadratisches Mittel  
Kubisches Mittel  

Beispiele für die Verwendung unterschiedlicher Mittelwerte

Urliste Wert
  2 (A)
  2 (A)
  2 (A)
  3 (B)
  3 (B)
  4 (C)
  5 (D)
 
Säulendiagramm zu den Beispielen

Im Folgenden soll beispielhaft an den sieben rechts angegebenen Ausprägungen gezeigt werden, wo welche Definition des Mittelwerts sinnvoll ist.

Der Modus ist bereits in der Nominalskala sinnvoll, in der einzelne Merkmale nicht geordnet werden können. Sind etwa von sieben befragten Personen drei katholisch ( ), zwei evangelisch ( ), einer muslimisch ( ) und einer Hindu ( ), so liegt der Modus bei  , denn dies kommt am häufigsten vor.

Für den Median ist eine Ordinalskala Voraussetzung, in der die Merkmale geordnet werden können. Auf die Frage nach der Qualität des Essens eines Restaurants antworten beispielsweise drei Kunden mit „sehr gut“ ( ), zwei mit „gut“ ( ) sowie je einer mit „mittel“ und „schlecht“ ( ). Nach Ordnen der Daten wie in der Liste rechts erkennt man, dass die mittlere Beobachtung bei   liegt. Der Median ist also  .

Das arithmetische Mittel wird beispielsweise zum Berechnen der Durchschnittsgeschwindigkeit genutzt: Läuft eine Schildkröte erst drei Meter pro Stunde, dann drei Stunden lang je zwei Meter und beschleunigt für jeweils eine Stunde nochmals auf drei, vier und fünf Meter pro Stunde, so ergibt sich als arithmetisches Mittel bei einer Strecke von 21 Metern in 7 Stunden:

 

Auch das harmonische Mittel kann zur Berechnung einer durchschnittlichen Geschwindigkeit sinnvoll sein, wenn nicht über gleiche Zeiten sondern über gleiche Strecken gemessen wird: Die Schildkröte laufe den 1. Meter mit 3 Metern pro Stunde, weitere 3 m mit jeweils 2 m/h und beschleunigt auf den letzten 3 Metern nochmals auf jeweils 3, 4 und 5 m/h. Die Durchschnittsgeschwindigkeit ergibt sich bei einer Strecke von 7 Metern in   Stunden:

 

Mit dem geometrischen Mittel errechnet man den mittleren Wachstumsfaktor. Eine Bakterienkultur wachse beispielsweise am ersten Tag um das Fünffache, am zweiten um das Vierfache, dann zweimal um das Dreifache und die letzten drei Tage verdoppelt sie sich täglich. Der Bestand nach dem siebten Tag errechnet sich also durch   Alternativ kann mit dem geometrischen Mittel der Endbestand ermittelt werden, denn

 

und somit ist

 

Ein tägliches Wachstum der Bakterienkultur um das 2,83-Fache hätte also nach sieben Tagen zum selben Ergebnis geführt.

Geschichte

In der Mathematik treten Mittelwerte, insbesondere die drei klassischen Mittelwerte (Arithmetisches, Geometrisches und Harmonisches Mittel) bereits in der Antike auf. Pappos von Alexandria kennzeichnet 10 verschiedene Mittelwerte m von 2 Zahlen   und   ( ) durch spezielle Werte des Streckenverhältnisses  . Auch die Ungleichung zwischen harmonischem, geometrischem und arithmetischem Mittel ist in der Antike bereits bekannt und geometrisch interpretiert. Im 19. und 20. Jahrhundert spielen Mittelwerte in der Analysis eine spezielle Rolle, dort im Wesentlichen im Zusammenhang mit berühmten Ungleichungen und wichtigen Funktionseigenschaften wie Konvexität (Hölder-Ungleichung, Minkowski-Ungleichung, Jensensche Ungleichung usw.). Dabei wurden die klassischen Mittelwerte in mehreren Schritten verallgemeinert, zunächst zu den Potenzmittelwerten (siehe Abschnitt Hölder-Mittel unten) und diese wiederum zu den quasi-arithmetischen Mittelwerten. Die klassische Ungleichung zwischen harmonischem, geometrischem und arithmetischem Mittel geht dabei über in allgemeinere Ungleichungen zwischen Potenzmittelwerten bzw. quasi-arithmetischen Mittelwerten.

Gemeinsame Definition der drei klassischen Mittelwerte

Die Idee, die den drei klassischen Mittelwerten zugrunde liegt, lässt sich auf folgende Weise allgemein formulieren:

Beim arithmetischen Mittel sucht man die Zahl  , für die

 

gilt, wobei sich die Summe links über   Summanden erstreckt. Das arithmetische Mittel mittelt also bzgl. der arithmetischen Verknüpfung „Summe“. Anschaulich bestimmt man mit dem arithmetischen Mittel aus Stäben verschiedener Länge einen mit einer durchschnittlichen oder mittleren Länge.

Beim geometrischen Mittel sucht man die Zahl  , für die

 

gilt, wobei sich das Produkt links über n Faktoren erstreckt. Das geometrische Mittel mittelt also bzgl. der arithmetischen Verknüpfung „Produkt“.

Das harmonische Mittel   löst die Gleichung

 

Zusammenhänge

Der Kehrwert des harmonischen Mittels ist gleich dem arithmetischen Mittel der Kehrwerte der Zahlen.

Für n=2 hängen die Mittelwerte untereinander in folgender Weise zusammen:

 

oder nach dem geometrischen Mittel aufgelöst

 

Ungleichung der Mittelwerte

Hauptartikel: Ungleichung der Mittelwerte

Die Ungleichung von arithmetischen und geometrischen Mittel vergleicht die Wert des arithmetischen und geometrischen Mittels zweier gegebener Zahlen: Es gilt für positive Variable stets

 

Die Ungleichung lässt sich auch auf weitere Mittelwerte ausdehnen, z.B. (für positive Variable)

 

Für zwei (positive) Variable gibt es auch eine grafische Veranschaulichung:

 
geometrischer Beweis der Ungleichung für Mittelwerte zweier Variablen

Das geometrische Mittel folgt direkt aus dem euklidischen Höhensatz und das harmonische Mittel aus dem euklidischen Kathetensatz mit der Beziehung

 

Weitere Mittelwerte und ähnliche Funktionen

Gewichtete Mittel

Die gewichteten Mittelwerte entstehen, wenn man den einzelnen Werten unterschiedliche Gewichte, mit denen sie in das Gesamtmittel einfließen, zuordnet; zum Beispiel wenn bei einer Prüfung mündliche und schriftliche Leistung unterschiedlich stark in die Gesamtnote einfließen.

Die genauen Definitionen finden sich hier: gewichtetes arithmetisches Mittel, gewichtetes geometrisches Mittel, gewichtetes harmonisches Mittel

Logarithmischer Mittelwert

Der logarithmische Mittelwert   zwischen   und   ist definiert als:

 

Für   liegt der logarithmische Mittelwert zwischen dem geometrischen und dem arithmetischen Mittelwert.

Winsorisiertes oder gestutztes Mittel

Kann man davon ausgehen, dass die Daten durch „Ausreißer“, das heißt einige wenige zu hohe oder zu niedrige Werte, kontaminiert sind, so kann man die Daten entweder durch Stutzen oder durch „Winsorisieren“ (benannt nach Charles P. Winsor) bereinigen und den gestutzten   (engl. truncated mean) oder winsorisierten Mittelwert   (engl. Winsorized mean) berechnen. In beiden Fällen sortiert man die Beobachtungswerte zuerst nach aufsteigender Größe. Beim Stutzen schneidet man sodann eine gleiche Anzahl von Werten am Anfang und am Ende der Folge ab und berechnet von den übrig bleibenden Werten den Mittelwert. Hingegen werden beim „Winsorisieren“ die Ausreißer am Anfang und Ende der Folge durch den nächstgrößeren (bzw. -kleineren) Wert der restlichen Daten ersetzt.

Beispiel: Hat man 10 aufsteigend sortierte, reelle Zahlen  , so ist das 10%-gestutzte Mittel gleich

 

Indes ist der 10-%-winsorisierte Mittelwert gleich

 

Quartilsmittel

Das Quartilsmittel ist definiert als der Mittelwert des 1. und 3. Quartils:

 

Er ist robuster als das arithmetische Mittel, aber weniger robust als der Median.

Bereichsmittel

Das Bereichsmittel ist definiert als der Mittelwert des größten und kleinsten Beobachtungswerts:

 

Das „a-Mittel“

Für einen gegebenen reellen Vektor   mit   wird der Ausdruck

 

wobei über alle Permutationen   von   summiert wird, als „ -Mittel“ [ ] der nichtnegativen reellen Zahlen   bezeichnet.

Für den Fall  , ergibt das genau das arithmetische Mittel der Zahlen  ; für den Fall   ergibt sich genau das geometrische Mittel.

Für die  -Mittel gilt die Muirhead-Ungleichung.

Beispiel: Sei   und

  dann gilt   und die Menge der Permutationen (in Kurzschreibweise) von   ist
 

Damit ergibt sich

 

Goldener Schnitt

 
Goldener Schnitt: stetige Teilung einer Strecke

Unter dem goldenen Schnitt versteht man in Bezug auf den Mittelwert die stetige Teilung einer Strecke:

 

Die Konstruktion des Teilpunktes   der Strecke   erfolgt mit    .

Gleitende Durchschnitte

Hauptartikel: Gleitender Mittelwert

Gleitende Durchschnitte werden in der dynamischen Analyse von Messwerten angewandt. Sie sind außerdem ein gängiges Mittel der technischen Analyse in der Finanzmathematik. Mit gleitenden Durchschnitten kann das stochastische Rauschen aus zeitlich voranschreitenden Signalen herausgefiltert werden. Häufig handelt es sich dabei um FIR-Filter. Jedoch muss beachtet werden, dass die meisten gleitenden Durchschnitte dem echten Signal hinterherlaufen. Für vorausschauende Filter siehe z. B. Kalman-Filter.

Gleitende Durchschnitte benötigen normalerweise eine unabhängige Variable, die die Größe der nachlaufenden Stichprobe bezeichnet, bzw. das Gewicht des vorangehenden Wertes für die exponentiellen gleitenden Durchschnitte.

Gängige gleitende Durchschnitte sind:

  • arithmetische gleitende Durchschnitte (Simple Moving Average – SMA),
  • exponentiell gleitende Durchschnitte (Exponential Moving Average – EMA),
  • doppelt exponentiell gleitende Durchschnitte (Double EMA, DEMA),
  • dreifach,  -fach exponentiell gleitende Durchschnitte (Triple EMA – TEMA),
  • linear gewichtete gleitende Durchschnitte (linear abfallende Gewichtung),
  • quadratisch gewichtete gleitende Durchschnitte und
  • weitere Gewichtungen: Sinus, Triangular, …

In der Finanzliteratur können außerdem sogenannte adaptive gleitende Durchschnitte gefunden werden, die sich automatisch einer sich ändernden Umgebung (andere Volatilität/Streuung etc.) anpassen:

  • Kaufmann’s Adaptive Moving Average (KAMA) sowie
  • Variable Index Dynamic Average (VIDYA).

Für die Anwendung von gleitenden Durchschnitten siehe auch Gleitende Durchschnitte (Chartanalyse) und MA-Modell.

Sonstige Mittelwerte

Sonstige Mittelwerte, die in einem eigenen Artikel beschrieben werden, sind der Modus (eigentlich kein Mittelwert, sondern der häufigste Wert) und der Median, der robust gegenüber extremen Abweichungen, sogenannten Ausreißern, ist.

Außerdem lassen sich Mittelwerte kombinieren; so entsteht etwa das arithmetisch-geometrische Mittel, das zwischen dem arithmetischen und geometrischen Mittel liegt.

Verallgemeinerte Mittelwerte

Es gibt eine Reihe weiterer Funktionen, mit denen sich die bekannten und weitere Mittelwerte erzeugen lassen.

Hölder-Mittel

Siehe auch Hauptartikel Hölder-Mittel.

Für positive Zahlen   definiert man den  -Potenzmittelwert, auch Hölder-Mittel (engl.:  -th power mean) als

 

Man beachte, dass sowohl Notation als auch Bezeichnung uneinheitlich sind.

Für   = −1, 0, 1, 2 und 3 ergeben sich daraus etwa das harmonische, das geometrische, das arithmetische, das quadratische und das kubische Mittel.

Außerdem gilt: Je größer   ist, desto größer ist  ; daraus folgt dann die verallgemeinerte Ungleichung der Mittelwerte

 

Lehmer-Mittel

Das Lehmer-Mittel[2] ist ein anderer verallgemeinerter Mittelwert; zur Stufe   ist es definiert durch

 

Es hat die Spezialfälle

  •  
  •   ist das harmonische Mittel;
  •   ist das geometrische Mittel von   und  ;
  •   ist das arithmetische Mittel;
  •  

Stolarsky-Mittel

Das Stolarsky-Mittel zweier Zahlen   ist definiert durch

 

Mittelwert einer Funktion

Das arithmetische Mittel einer stetigen Funktion   in einem geschlossenen Intervall   ist

 

ihr quadratisches

 

Diese finden in der Technik erhebliche Beachtung, siehe Arithmetischer Mittelwert (Elektrotechnik) und Effektivwert.

Siehe auch

Literatur

  • F. Ferschl: Deskriptive Statistik. 3. Auflage. Physica-Verlag Würzburg, ISBN 3-7908-0336-7.
  • P. S. Bullen: Handbook of Means and Their Inequalities. Kluwer Acad. Pub. 2003, ISBN 1-4020-1522-4 (umfassende Diskussion von Mittelwerten und der mit ihnen verbundenen Ungleichungen).
  • G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities. Cambridge Univ. Press 1964.
  • E. Beckenbach, R. Bellman: Inequalities. Springer, Berlin 1961.

Einzelnachweise

  1. F. Ferschl: Deskriptive Statistik. 3. Auflage. Physica-Verlag Würzburg, ISBN 3-7908-0336-7. Seiten 48-74
  2. Eric W. Weisstein: Lehmer Mean. In: MathWorld (englisch).