Differentialgleichung

mathematische Gleichung mit Ableitungen
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 2. Januar 2011 um 20:08 Uhr durch KCMO (Diskussion | Beiträge) (+<references />). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Eine Differentialgleichung (auch Differenzialgleichung, oft durch DGL oder DG abgekürzt) ist eine mathematische Gleichung für eine gesuchte Funktion , die von einer oder mehreren Variablen x abhängt und in der Ableitungen der Funktion enthalten sind. Die Differentialgleichung drückt mithin eine Abhängigkeit zwischen den Variablen x, der Funktion y und Ableitungen dieser Funktion aus. Viele Naturgesetze können mittels Differentialgleichungen formuliert werden. Differentialgleichungen sind daher ein wesentliches Werkzeug der mathematischen Modellierung. Dabei beschreibt eine Differentialgleichung das Änderungsverhalten dieser Größen zueinander. Differentialgleichungen sind ein wichtiges Objekt der Analysis, die die Lösungstheorie untersucht. Nicht nur weil für viele Differentialgleichungen keine explizite Lösungsdarstellung möglich ist, spielt die näherungsweise Lösung mittels numerischer Verfahren eine wesentliche Rolle.


Allgemeine Definition

Ganz allgemein ist

 

eine Differentialgleichung  -ter Ordnung. Hierbei bezeichnet   die  -ten Ableitungen nach der oder den Unbekannten  .

Typen von Differentialgleichungen

Man unterscheidet verschiedene Typen von Differentialgleichungen. Ganz grob unterteilen sie sich in die folgenden Teilgebiete. Alle der folgenden Typen können im wesentlichen unabhängig und gleichzeitig nebeneinander auftreten.

Gewöhnliche Differentialgleichungen

Hauptartikel Gewöhnliche Differentialgleichung

Hängt die Funktion   lediglich von einer Variablen   ab, so spricht man von einer gewöhnlichen Differentialgleichung. Es kommen lediglich gewöhnliche Ableitungen nach der einen Veränderlichen vor.

Schreibt sich die gewöhnliche Differentialgleichung in der Form

 

so heißt die gewöhnliche Differentialgleichung implizit. Ist die Differentialgleichung nach der höchsten Ableitung aufgelöst, d.h. es gilt

 

so nennt man die gewöhnliche Differentialgleichung explizit. In den Anwendungen sind explizite gewöhnliche Differentialgleichungen mathematisch einfacher zu verarbeiten. Es gibt eine abgeschlossene Theorie expliziter gewöhnlicher Differentialgleichungen.

Partielle Differentialgleichung

Hauptartikel Partielle Differentialgleichung

Hängt die Lösung   von mehreren Unbekannten   ab und treten in der Gleichung partielle Ableitungen nach mehr als einer der Unbekannten auf, so spricht man von einer partiellen Differentialgleichung. Partielle Differentialgleichungen sind ein großes Feld und die Theorie ist mathematisch nicht abgeschlossen, sondern Gegenstand der aktuellen Forschung in mehreren Gebieten.

Man unterscheidet verschiedene Typen partieller Differentialgleichungen. Zunächst gibt es lineare partielle Differentialgleichungen. Dabei ist die Funktion   linear in den Größen  . Die Abhängigkeit bezüglich der Variablen   kann durchaus nicht-linear sein. Die Theorie linearer partieller Differentialgleichungen ist am weitesten fortgeschritten, jedoch weit davon entfernt, abgeschlossen zu sein.

Hängt die Gleichung sowohl nicht-linear in der Veränderlichen   als auch in der Lösung   ab, so nennt man die partielle Differentialgleichung semi-linear. Eine semi-lineare Gleichung ist schon schwieriger zu behandeln.

Ist nur noch Abhängigkeit von den höchsten Ableitungen linear, so spricht man von einer quasi-linearen partiellen Differentialgleichung. Gerade im Gebiet der quasi-linearen Gleichungen werden zur Zeit die meisten Resultate der aktuellen Forschung ermittelt.

Kann man schließlich auch keine lineare Abhängigkeit bezüglich der höchsten Ableitungen feststellen, nennt man die Gleichung eine nicht-lineare partielle Differentialgleichung oder eine vollständig-nichtlineare partielle Differentialgleichung.

Besonders interessant in dem Gebiet partieller Differentialgleichungen sind die Gleichungen zweiter Ordnung. In diesen Spezialfällen gibt es noch weitere Klassifikationsmöglichkeiten.

Weitere Typen

Beim Typus der stochastischen Differentialgleichungen treten in der Gleichung sogenannte stochastische Prozesse auf. Eigentlich sind stochastische Differentialgleichungen keine Differentialgleichungen im obigen Sinne, sondern lediglich gewisse Differentialrelationen, welche als Differentialgleichung interpretiert werden können.

Der Typus der Algebro-Differentialgleichungen zeichnet sich dadurch aus, dass zusätzlich zur Differentialgleichung auch noch algebraische Relationen als Nebenbedingungen gegeben sind.

Weiter gibt es noch sogenannte Delay-Differentialgleichungen. Hier treten neben einer Funktion und ihren Ableitungen zu einem Zeitpunkt   auch noch Funktionswerte bzw. Ableitungen aus der Vergangenheit auf.

Unter einer Integro-Differentialgleichung versteht man eine Gleichung in der nicht nur die Funktion und deren Ableitungen, sondern auch noch Integrationen der Funktion auftauchen. Ein wichtiges Beispiel dazu ist die Schrödingergleichung in der Impulsdarstellung (Fredholm'sche Integralgleichung).

Je nach Anwendungsgebiet und Methodik gibt es noch weitere Typen von Differentialgleichungen.

Systeme von Differentialgleichungen

Als System von Differentialgleichungen bezeichnet man den Fall, wenn   eine vektorwertige Abbildung ist und damit die Gleichung

 

ebenfalls vektorwertige. Lässt sich dieses implizite Differentialgleichungssystem nicht überall lokal in ein explizites System umwandeln, so handelt es sich um eine Algebro-Differentialgleichung.

Problemstellungen

Die Lösungsmenge einer Differentialgleichung ist im allgemeinen nicht durch die Gleichung selbst eindeutig bestimmt, sondern benötigt zusätzlich noch weitere Anfangs- oder Randwerte. Im Bereich der partiellen Differentialgleichungen können auch sogenannte Anfangsrandwertprobleme auftreten.

Grundsätzlich wird bei Anfangs- oder Anfangsrandwertproblemen eine der Veränderlichen als Zeit interpretiert. Bei diesen Problemen werden gewisse Daten zu einem gewissen Zeitpunkt, nämlich dem Anfangszeitpunkt, vorgeschrieben.

Bei den Randwert- oder Anfangsrandwertproblemen wird eine Lösung der Differentialgleichung in einem beschränkten oder unbeschränktem Gebiet gesucht und wir stellen als Daten sogenannte Randwerte, welche eben auf dem Rand des Gebietes gegeben sind. Je nach Art der Randbedingungen unterscheidet man weitere Typen von Differentialgleichungen, etwa Dirichlet-Probleme oder Neumann-Probleme.

Lösungsmethoden

Auf Grund der Vielfältigkeiten sowohl bei den eigentlichen Differentialgleichungen als auch bei den Problemstellungen ist es nicht möglich, eine allgemein gültige Lösungsmethodik anzugeben. Lediglich explizite gewöhnliche Differentialgleichungen können mit einer geschlossenen Theorie gelöst werden.

Lie-Theorie

Ein strukturierter allgemeiner Ansatz zur Lösung von Differentialgleichungen wird über die Symmetrie und die kontinuierliche Gruppentheorie verfolgt. 1870 stellte Sophus Lie in seiner Arbeit die Theorie der Differentialgleichungen mit der Lie-Theorie auf eine allgemeingültige Grundlage. Er zeigte, dass die älteren mathematischen Theorien zur Lösung von Differentialgleichungen durch die Einführung von sogenannten Lie-Gruppen zusammengefasst werden können. Ein allgemeiner Ansatz zur Lösung von Differentialgleichungen nutzt die Symmetrie-Eigenschaft der Differentialgleichungen aus. Dabei werden kontinuierliche infinitesimale Transformationen angewendet, die Lösungen auf (andere) Lösungen der Differentialgleichung abbilden. Kontinuierliche Gruppentheorie, Lie-Algebren und Differentialgeometrie werden verwendet, um die tiefere Struktur der linearen und nichtlinearen (partiellen) Differentialgleichungen zu erfassen und die Zusammenhänge abzubilden, siehe dazu auch die Themen Lax-Paare, Rekursive Operatoren, Kontakt- und Bäcklund-Transformationen, die schließlich zu den exakten analytischen Lösungen einer Differentialgleichung führen. Symmetrie-Methoden werden benutzt, um Differentialgleichungen exakt zu lösen.

Existenz und Eindeutigkeit

Die Fragen der Existenz, Eindeutigkeit, Darstellung und numerischen Berechnung von Lösungen sind somit je nach Gleichung vollständig bis gar nicht gelöst. Aufgrund der Bedeutung von Differentialgleichungen in der Praxis ist hierbei die Anwendung der numerischen Lösungsverfahren besonders bei partiellen Differentialgleichungen der theoretischen Untermauerung voraus.

Eines der Millennium-Probleme ist der Existenzbeweis einer regulären Lösung für sogenannte Navier-Stokes-Gleichungen. Diese Gleichungen treten beispielsweise in der Strömungsmechanik auf.

Auftreten und Anwendungen

Eine Vielzahl von Phänomenen in Natur und Technik kann durch Differentialgleichungen und darauf aufbauende mathematische Modelle beschrieben werden. Einige typische Beispiele sind:

Das Feld der Differentialgleichungen hat der Mathematik entscheidende Impulse verliehen. Viele Teile der aktuellen Mathematik forschen an der Existenz-, Eindeutigkeits- und Stabilitätstheorie verschiedener Typen von Differentialgleichungen.

Beispiele von Differentialgleichungen

Literatur

  • G. H. Golub, J. M. Ortega: Wissenschaftliches Rechnen und Differentialgleichungen. Eine Einführung in die Numerische Mathematik. Heldermann Verlag, Lemgo 1995, ISBN 3-88538-106-0.
  • G. Oberholz: Differentialgleichungen für technische Berufe - vierte Auflage. Verlag Anita Oberholz, Gelsenkirchen 1995, ISBN 3-9801902-4-2.
  • L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 2. Viewegs Fachbücher der Technik, Wiesbaden 2001, ISBN 3-528-94237-1.

Siehe auch

Einzelnachweise

  1. Peterson, Ivars: Filling in Blanks. In: Science News. 161. Jahrgang, Nr. 19. Society for Science &#38, S. 299–300, doi:10.2307/4013521, JSTOR:10.2307/4013521 (findarticles.com [abgerufen am 11. Mai 2008]).