Massenspektrometrie

analytische Methode zur Bestimmung des Masse-Ladungs-Verhältnises von Ionen
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 8. September 2010 um 16:20 Uhr durch Cepheiden (Diskussion | Beiträge) (Änderung 78863648 von 91.212.136.8 wurde rückgängig gemacht. 5 Einträge sollten reichen. Andernfalls begründen, ggf austauschen). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Massenspektrometrie ist ein Verfahren zum Messen der Masse von Teilchen. Dazu wird die zu untersuchende Substanz in die Gasphase überführt, ionisiert und die ionisierten Teilchen durch ein elektrisches Feld beschleunigt. Dieser Teilchenstrahl wird im Analysator nach dem Masse-zu-Ladung-Verhältnis m/q aufgetrennt.

Historisches

Bereits im Jahr 1897 publizierte J. J. Thomson verschiedene Experimente, in denen er in Vakuumröhren Kathodenstrahlen von verschiedenen Kathodenmetallen mit elektromagnetischen Feldern ablenkte und stellte schon korrekte Gleichungen zum Zusammenhang zwischen Masse, Geschwindigkeit und Bahnradius auf. 1913 publizierte Thomson eine Methode, um mit Hilfe eines „MassenspektroskopsFotoplatten zu belichten und so qualitative und quantitative Untersuchungen an den in einer Röhre enthaltenen Gasen durchzuführen.

Vor Thomson hatten bereits Eugen Goldstein 1886 und Wilhelm Wien 1886 und 1898 über die sogenannten Kanalstrahlen und ihre Ablenkung durch Felder berichtet. Sie hatten die weitreichenden Konsequenzen ihrer Entdeckungen jedoch 1886 noch nicht erkannt. [1] [2] [3] [4] [5] [6]

Parameter eines Massenspektrometers

Ein Massenspektrometer wird im wesentlichen durch zwei Parameter charakterisiert die Massenauflösung und die Massengenauigkeit.

Die Massenauflösung bezeichnet den minimalen Massenunterschied dm, den zwei Ionen haben müssen, damit sie noch aufgelöst werden können. Die Auflösung eines Massenspektrometers wird in der Einheit Thomson (Th) angegeben, wobei aber trotzdem öfter nur das Auflösungsvermögen R angegeben wird. Dieses ist als Verhältnis einer Masse zum Massenunterschied der nächsten noch getrennt erscheinenden Masse ( ) definiert. Zum Beispiel würde man bei einem Auflösungsvermögen von 4000 die Peaks bei 4000 Th und 4001 Th noch getrennt sehen, aber ebenso die Peaks bei 2000 Th und 2000,5 Th da 2000/(2000,5 − 2000) = 4000. In der Praxis werden die beiden Begriffe Auflösung und Auflösungsvermögen leider oft nicht exakt auseinander gehalten.

Es gibt drei verschiedene Definitionen der Auflösung:

  • Bei der 10-%-Methode definiert man dm als die Massenabweichung bei der die Intensität eines Peaks auf 10 % des Maximums absinkt.
  • Bei der 50-%-Methode definiert man dm als die Massenabweichung bei der die Intensität eines Peaks auf 50 % des Maximums absinkt.
  • Bei der Halbwertsbreitenmethode (FWHM (full width at half maximum height)) definiert man dm als die volle Peakbreite bei der halben Peakhöhe.

Die Massengenauigkeit gibt an wie genau die Masse des Teilchens bestimmt werden kann. Diese Angabe erfolgt oft in parts per million (ppm), d. h., ein Molekül mit der nominellen Masse 500 kann bei einer Genauigkeit von 1 ppm auf 0,0005 u genau bestimmt werden.

Aufbau eines Massenspektrometers

 
Schematische Zeichnung eines hochauflösenden Sektorfeld-Massenspektrometers

Ein Massenspektrometer (MS) besteht aus einer Ionenquelle, einem Analysator und einem Detektor. Jedes dieser Bauteile existiert in verschiedenen Bauformen und Funktionsprinzipien die prinzipiell frei kombinierbar sind, obschon bevorzugte Kombinationen existieren. Diese werden im Folgenden beschrieben.

Ionenquelle

In der Ionenquelle wird der Analyt ionisiert. Dies kann mit Hilfe verschiedener Methoden erfolgen. Die Wahl der Methode ist hauptsächlich abhängig von der Art der zu analysierenden Substanz und davon wie schonend ionisiert werden soll. Die Ionen werden meistens mit einem elektrischen Feld aus der Ionenquelle extrahiert und in den Analysator übergeben

Analysator

Im Analysator oder Massenselektor werden die Ionen nach ihrer Masse (genauer: Masse-zu-Ladung-Verhältnis, also m/q) getrennt. Auch hier gibt es mehrere Methoden, die sich teilweise erheblich in ihrer Auflösung unterscheiden.

Detektor

Als Detektor wird meistens ein Photomultiplier, ein Sekundärelektronenvervielfacher (SEV) oder ein Faraday-Auffänger verwendet. Der SEV wird teilweise in Kombination mit einer Konversionsdynode verwendet, bei der die Ionen aufgrund einer angelegten hohen Beschleunigungsspannung (bis zu 25 kV) auf eine Metalloberfläche prallen und der SEV dann die freiwerdenden Elektronen detektiert.

Daneben werden als Detektor auch Daly-Detektoren, Mikrokanalplatten und Channeltrons verwendet. In der Anfangszeit der Massenspektrometrie wurden auch Fotoplatten benutzt.

FT-ICR- und Orbitrap-Massenspektrometer messen Ströme („image-currents“), welche durch die sich bewegenden Ionenpakete in den Detektorplatten erzeugt werden. In diesem Fall werden die Ionen also nicht vom Detektor absorbiert und können deshalb mehrfach gemessen werden. Das trägt entscheidend zur hohen Messgenauigkeit dieser Instrumente bei.

Ionisationsmethoden

Elektronenstoßmethoden

Elektronenstoßionisation (EI, Electron impact, Elektronenstoß)
Die Elektronenstoßionisation ist die meistgenutzte Ionisationsmethode. Dabei werden von einem Filament Elektronen mittels eines elektrischen Feldes auf eine kinetische Energie von 5 bis 200 eV (aus Stabilitätsgründen verwendet man oft 70 eV) beschleunigt und durch eine Gaswolke der zu ionisierenden Moleküle geschickt. Beim Zusammenstoß der Elektronen mit den Molekülen wird ein weiteres Elektron herausgeschlagen, es entsteht ein Radikalkation. Dieses ist meistens instabil und zerfällt in kleinere Massenfragmente, von denen eines geladen bleibt. Die Größen und Häufigkeiten der Fragmente sind bei gegebener Beschleunigungsspannung der Elektronen für eine Substanz in Datenbanken katalogisiert und können zur Identifizierung herangezogen werden.
Chemische Ionisation (CI)
Bei der chemischen Ionisation wird ein Gas zugeführt, das durch Elektronenstoßionisation angeregt/ionisiert wird. Die aus dem Gas gebildeten Ionen reagieren dann mit dem Analyten und ionisieren ihn. Der Fragmentierungsgrad ist geringer als bei der Elektronenionisation.
Sanfte Ionisation
Bei der sanften Ionisation werden Gase mit geringer Ionisationsenergie (z. B. Xe, Ar, Hg mit Ionisationenergien von 10 bis 14 eV) zur Ionisation der Probengase statt des direkten Beschusses mit den hochenergetischeren Elektronen (i. d. R. 70 bis 105 eV) verwendet. Das Ionengas wird zwar auch mittels Elektronenbeschusses erzeugt, aber durch eine Auswahl über Vorfelder erreichen nur einfach ionisierte Atome des Ionengases das zu ionisierende Probengas. Die stark störende Fragmentierung (mehrere Peaks im Spektrum) der Moleküle im Probengas wird dadurch nahezu ganz unterbunden. Da sich zudem unterschiedliche Gase mit gleicher Massenzahl von den Ionisierungsgasen verschieden ionisieren lassen, ist eine Differenzierung von isomeren durch analytische Vergleiche möglich.

Feldionisationsmethoden

Feldionisation (FI)
Bei der Feldionisation wird ein Gas in einem hohen elektrischen Feld an zahlreichen Spitzen (Graphitdendriten) sehr schonend ionisiert.
Felddesorption (FD)
Bei der Felddesorption wird ein fester oder flüssiger Analyt, der den zahlreichen Graphitdendriten in Lösung zugeführt wird, in einem hohen elektrischen Feld wie bei FI sehr schonend ionisiert.
Liquid Injection Field Desorption Ionization (LIFDI)
Bei der LIFDI wird durch den Druckunterschied zwischen Normaldruck und Vakuum ein flüssiger Analyt über eine Kapillare direkt auf den Graphitdendriten gespritzt und dort in einem hohen elektronischen Feld wie bei FI sehr schonend ionisiert. Da die Zuführung des Analyt durch eine Kapillare erfolgt ist diese Methode speziell für das Analysieren von luftempfindlichen Substanzen geeignet.

Teilchenbeschussmethoden

Flüssigkeiten und Feststoffe können mit schnellen Atomen oder Ionen beschossen werden, worauf sich Ionen lösen. Kommen Atome zum Einsatz, heißt die Methode FAB (Fast Atom Bombardment, Schneller Atombeschuss), bei Ionen SIMS (Secondary Ion Mass Spectrometry, Sekundärionen-Massenspektrometrie). Neben den Sekundärionen werden auch ungeladene Teilchen (Sekundärneutralteilchen) erzeugt. Wenn diese zum Beispiel mit Laserlicht nachionisiert und dann analysiert werden, spricht man von Sekundär-Neutralteilchen-Massenspektrometrie (SNMS).

Sprühmethoden

Weiterhin gibt Sprühmethoden für die Ionisation:

  1. Bei der Elektrospray-Ionisation (ESI) werden Lösungen geladener oder polarer Substanzen versprüht, ionisiert und die Tröpfchen dann getrocknet, so dass Ionen des Analyten zurückbleiben. Diese Methode ist besonders geeignet für größere Moleküle, wie beispielsweise Proteine.
  2. Die chemische Ionisation unter Atmosphärendruck (Atmospheric Pressure Chemical Ionization, APCI) funktioniert ähnlich wie ESI, nur dass die Lösung des Analyten vor der Ionisation verdampft wird. Die Lösemittelmoleküle werden an einer spitzen Elektrode bei Atmosphärendruck ionisiert. Die Methode ist auch für weniger polare Analyten geeignet.

Photoionisationsmethoden

Photoionisation unter Atmosphärendruck
Eine weitere Form der Ionisation unter Atmosphärendruck wird durch Photonen erreicht Atmospheric Pressure Photo Ionization (APPI) oder auch Atmospheric Pressure Laser Ionization (APLI). Sie wird hauptsächlich an LC-Systeme gekoppelt. Der Eluent wird zunächst verdampft und anschließend durch Photonen ionisiert. Dabei werden die Photonen von einer Entladungslampe oder einem Laser senkrecht zum Molekülstrahl ausgesandt.
Matrix-unterstützte Laser-Desorption/Ionisation
Bei der Matrix-unterstützte Laser-Desorption/Ionisation (MALDI) wird der Analyt mit einem großen Überschuss einer Matrix genannten Substanz gemischt und cokristallisiert (Einbindung des Analyten in die kristalline Matrix). Die Matrix hat die Eigenschaft beim Beschuss mit einem Laser bestimmter Wellenlänge Energie zu absorbieren (zum Beispiel Stickstofflaser 337 nm). Vereinfacht gesagt kommt es bei dem Beschuss durch den Laser zum Herauslösen des intakten Analyten, an den ein von der Matrix bereitgestellter Ladungsträger, z. B. ein Proton, gebunden ist.
Ein-Photonen-Ionisation
Bei der Ein-Photonen-Ionisation (Single Photon Ionization) (SPI) wird die Ionisationenergie durch ein einzelnes Photon überwunden dessen Wellenlänge im Vakuum-Ultraviolett Bereich (VUV) liegt. Diese hochenergetischen Photonen können entweder als Synchrotronstrahlung oder mit Entladungslampen erzeugt werden.
Resonanzverstärkte Mehrphotonenionisation
Die resonazverstärkte Mehrphotonenionisation (REMPI) basiert auf der nahezu gleichzeitigen Absorption mehrerer ultravioletter Photonen deren Gesamtenergie oberhalb der Ionisationsierungsenergie des zu ionisierenden Moleküls liegt.

Weitere Methoden

  • Thermische Ionisation (TIMS, thermische Ionisationsmassenspektrometrie) wird in der Festkörpermassenspektrometrie eingesetzt. Dabei wird die Probe (Probenmenge je nach Stoff ng bis µg) zum Beispiel auf ein Wolframfilament aufgebracht. Durch das Filament wird ein Strom geschickt wobei es sich erhitzt und die aufgebrachte Probe verdampft, ein Teil der abgedampften Atome wird dabei ionisiert.
  • Ein induktiv gekoppeltes Plasma (engl. inductively coupled plasma, ICP) bricht die meisten Verbindungen in ihre Elemente auf und es entstehen vorwiegend einfach positiv geladene Ionen. Diese Methode wird daher vor allem bei der Massenspektrometrie mit induktiv gekoppeltem Plasma in der anorganischen Elementanalytik und Spurenanalytik eingesetzt.
  • Bei der Ionisation durch Glimmentladung (engl. glow discharge ionization, GDI) wird die Probe durch ein durch einen Lichtbogen erzeugtes Plasma ionisiert.

Arten von Analysatoren

Massenspektrometer werden durch den jeweilig eingesetzten Analysator typisiert.

Sektorfeld-Massenspektrometer

 
Schematische Zeichnung eines ICP/Sektorfeld-Massenspektrometers

In Sektorfeld-Massenspektrometern werden die Ionen in elektrischen und magnetischen Feldern abgelenkt. Der Radius der Kreisbahnen, die sie in den Feldern durchlaufen, hängt von der Energie (im elektrischen Feld) und vom Impuls (im magnetischen Feld) der Ionen ab. In Kenntnis der Ladung, der Energie und des Impulses kann dann die Masse bestimmt werden. Sektorfeld-Massenspektrometer können so gebaut werden, dass Ionen mit leicht unterschiedlicher Geschwindigkeit auf einem Punkt im Detektor abgebildet werden (Geschwindigkeitsfokussierung). Auch Ionen, deren Flugbahn leicht geneigt ist, können auf einen Punkt abgebildet werden (Richtungsfokussierung). Massenspektrometer, die beides gleichzeitig können, nennt man doppelfokussierend. Die Fokussierung ist nötig, um bei hoher Auflösung noch eine akzeptable Intensität des Messsignals zu erhalten. Sektorfeld-Massenspektrometer erreichen Auflösungen von bis zu 100 000 und waren vor der Entwicklung der FT-Ionenfallen die Massenspektrometer mit der größten Auflösung. Heute werden sie nur noch selten verwendet zum Beispiel in der Stabilisotopenmassenspektrometrie.

 
Massenspektrometer zur Bestimmung von 16O/18O und 12C/13C Isotopenverhältnissen an biogenem Karbonat

Quadrupol-Massenspektrometer

Im Quadrupol-Massenspektrometer werden die erzeugten Ionen durch ein statisches, elektrisches Feld beschleunigt und durchfliegen zentral vier parallel liegende Stabelektroden, deren Schnittpunkte mit einer Ebene senkrecht zur Zylinderachse ein Quadrat bilden (Quadrupol). Im Wechselfeld zwischen den Quadrupol-Stäben findet eine m/q-Selektierung statt, so dass jeweils nur Teilchen mit einer definierten Masse das Feld durchlaufen können. Die Ionen treffen in einem Detektor mit Messverstärker auf, der den Ionenstrom misst und von der Software des angeschlossenen PCs zur Zählrate bzw. zum Partialdruck umgerechnet wird. Die Ionisationseinheiten, Quadrupole und Detektoren sind in unterschiedlichsten Varianten für unterschiedliche Anwendungen erhältlich. Es ist in teuren, hochauflösenden aber auch günstigen Varianten (als Restgasanalysator) zu erhalten und hat dadurch eine hohe Verbreitung im F&E-Bereich.

 
Triple-Quadrupol-Massenspektrometer
 
Quadrupol eines Triple-Quadrupol-Massenspektrometer

Massen-Selektierung im Quadrupol-Feld

Die gegenüberliegenden Elektroden des Quadrupol befinden sich auf gleichem Potential und zwischen benachbarten Elektroden wird eine Spannung mit einem Gleich- und einem hochfrequenten Wechselspannungs-Anteil angelegt, d. h.  . Die Bahn der Ionen im QMS wird durch die Differentialgleichungen von Mathieu beschrieben. Aus systematischen Untersuchungen dieser Differentialgleichungen ist bekannt, dass es gewisse stabile und instabile Bereiche gibt. Die Arbeitsgerade, d. h., die Gerade auf der alle beobachtbaren Massen liegen, wird durch das Verhältnis   bestimmt. Um ein möglichst gutes Auflösungsvermögen (in der Praxis R = 1.000 bis 4.000) zu erreichen, muss   gelten. Der Schnitt aus Arbeitsgeraden und stabilem Bereich der Mathieuschen Differentialgleichungen ist dann sehr klein. Der Wert 0,1678 darf aber auf keinen Fall überschritten werden, ansonsten sind alle Ionen instabil. Instabile Ionen kollidieren während des Durchlaufes mit einem der vier Stäbe.

Über die Einstellung der Frequenz   oder Spannungen   lässt sich festlegen, welche Teilchen mit welchem Masse-zu-Ladungs-Verhältnis den Detektor über die zentrale Flugbahn erreichen. Die Bahn eines Teilchens mit richtigem m/e-Verhältnis ist sinusförmig mit gleichbleibenden Abständen zur Mittelbahn des Quadrupols. Alle anderen Ionen fliegen zwar auch im Sinustakt durch das Wechselfeld um diesen Sollbahnbereich, werden aber immer weit herausbeschleunigt, so dass sie irgendwann seitlich außerhalb des Quadrupols hinausschießen und den Einflussbereich des EM-Feldes verlassen.

Da die Ionisierung durch Elektronenstoß erfolgt, treten bei fast allen Atome/Moleküle statt einem Peak bei der entsprechenden Masse des Atomes/Moleküles mehrere Peaks im Massenspektrum auf. Dies hat verschiedene Ursachen:

  • Die Moleküle können bei der Kollision mit den Elektronen in verschiedene Bestandteile zerbrechen (Fragmentierung). So ruft z. B. Ethanol (C2H5OH) (Masse 46,07 g/mol) einen schwachen Peak bei 46 Th (C2H5OH) hervor, einen stärkeren Peak bei 45 Th (ein Wasserstoffatom fehlt) und den stärksten Peak (ca. 10-mal höher als die anderen Peaks) bei 31 Th (CH2OH). Weitere Peaks sind u. a. 17 Th (OH).
  • Eine teilweise Rekombination oder Neubildung von Molekülen ist zwar sehr viel seltener. Es ist aber wegen der hohen Genauigkeit des QMS nicht auszuschließen, dass entsprechende Zählraten auftreten können
  • Die Bruchstücke der Moleküle bzw. Atome können zweifach oder sogar dreifach ionisiert werden. Da das QMS – wie andere Massenspektrometer – prinzipbedingt nur den m/q-Wert misst, ergeben sich folglich mehrere Peaks, z. B. Argon bei 40 Th und bei 20 Th.
  • Bei hohen Konzentrationen von Edelgasen in einer Probe sind die sogenannten Cluster zu sehen, z. B. für Argon 40 ein Peak bei 80AMU.

Flugzeitmassenspektrometer (TOFMS)

Im Flugzeitmassenspektrometer (TOFMS) wird ausgenutzt, dass die Ionen beim Eintritt in den Analysator alle die gleiche Energie haben und leichte Ionen deshalb schneller sind als schwere. Die Auflösung beträgt bis zu R = 15.000 (10-%-Methode). Daher erreichen leichte Ionen den Detektor eher als schwere Ionen. In der Praxis haben sich Geräte mit Ionenspiegeln bzw. Reflektron bewährt, bei denen die Flugstrecke durch ein zusätzliches elektrisches Feld am Ende der ursprünglichen Flugrichtung verdoppelt wird. Zusätzlich erreicht man durch diese Technik eine weitere Fokussierung, die die Varianz in der Geschwindigkeit der Ionen aufgrund des Doppler-Effekts minimiert.

Ionenfallen-Massenspektrometer

 
Ionenfallen-Massenspekrometer

In Ionenfallen-Massenspektrometern werden die Ionen durch elektromagnetische Felder in einem definierten Bereich gehalten und können so analysiert und manipuliert werden. In Ionenfallen-Massenspektrometern ist eine mehrfache Wiederholung von Anregung und Massenselektion möglich, ohne dass ein weiteres Bauteil benötigt wird. Folgende Typen von Ionenfallen-Massenspektrometer existieren:

  1. Quadrupol-Ionenfalle
  2. Linear trap
  3. Fouriertransformations-Ionenzyklotronresonanz (FT-ICR)
  4. Orbitrap

MS/MS (auch Tandem-Massenspektrometrie)

Um Fragmentierungen zu studieren oder auch um die Selektivität und Sensitivität (Nachweisgrenze) einer Quantifizierungsmethode entscheidend zu verbessern, koppelt man entweder mehrere Analysatoren hintereinander oder arbeitet in Ionentraps. Zwischen zwei Analysatoren wird eine sogenannte Kollisionszelle eingebaut um den Ionen durch Stöße mit einem Inertgas (N2 oder Ar) Energie zuzuführen. Daraufhin zerfallen die Ionen sehr spezifisch zu anderen (leichteren) Ionen.

Viele Kombinationen der Analysatoren sind denkbar. Die gängigsten sind Triplequads, QqTOF (Quadropol-Quadrupol-TOF), TOF-TOF, und inzwischen auch TRAP-FTICR und TRAP-Orbitrap.

Am weitesten verbreitet sind sogenannte Tripelquads (QqQ). Dabei wird meist durch ESI ein Pseudomolekülion produziert, im ersten Analysatorquadrupol isoliert und dann im zweiten Quadrupol – der sogenannten Kollisionszelle oder Stoßkammer – angeregt.

In die Stoßkammer kann ein Stoßgas eingespeist werden. Dabei wird der Druck so gewählt, dass im Mittel ein erzeugtes Ion maximal einmal mit einem Gasmolekül kollidiert. Diese Methode ermöglicht es, erzeugte Ionen weiter zu fragmentieren.

Im dritten Quadrupol hat man dann die Möglichkeit zu „scannen“, also alle Produktionen des im ersten Quadrupol isolierten Ions (Parent) zu ermitteln, oder selektiv nur ein bekanntes Fragmention zu beobachten. Scannt man, ermittelt man die „Spektralinformation“ und kann Rückschlüsse auf die Struktur ziehen. Beobachtet man hingegen nur ein oder zwei Fragmentionen, so kann man sehr empfindlich und selektiv quantifizieren. Man spricht dann von MRM (Multiple Reaction Monitoring).

Der Vollständigkeit halber sei erwähnt, dass es auch andere Techniken für MS/MS (und sog. MSn) gibt. In Iontraps kann man ein Ion isolieren, und ihm dann entweder durch Kollision (hier aber meist mit He) oder auch durch Strahlung Energie zuführen. Gerade in FT-ICR-Geräten verwendet man dazu Infrarotlaser (IRMPD) oder „Elektronenkanonen“ (Electron Capture Dissociation). Eine weitere Methode ist die Electron Transfer Dissociation (ETD), die gerade im Bereich der Proteinidentifikation erste Einsatzmöglichkeiten erfährt.

Kopplung mit Chromatographieverfahren

Bei sehr komplexen Proben ist es nützlich, diese mit einem vorgelegten Trennverfahren aufzutrennen, bevor man sie dem Massenspektrometer zuführt. Man spricht dann von hyphenated separation. In diesem Sinn wird Massenspektrometrie oft zusammen mit Gas-(GC/MS) oder Flüssigkeits-Chromatographen (LC/MS) betrieben. Weniger weit verbreitet sind die Kopplung mit Kapillarelektrophorese (CE/MS) und Ionenmobilitäts-Spektrometrie (IMS/MS). Teilweise werden auch mehrdimensionale Trenntechniken eingesetzt z. B. GCxGC-MS. TOFMS eignet sich besonders gut im Verbund mit GCxGC, weil damit sehr schnell Massenspektren über einen großen m/q-Bereich aufgenommen werden können. GCxGC-TOFMS bezeichnet ein zweidimensionales chemisch-analytisches Trennverfahren mit massenspektrometrischer Detektion (siehe auch Multidimensionale Chromatographie), genauer, zweidimensionale Gaschromatographie gekoppelt mit einer Flugzeit-Massenspektrometrie (engl.: Comprehensive Two-Dimensional Gas Chromatography Coupled To Time-Of-Flight Mass Spectrometry). Dieses Verfahren erlaubt eine genaue Auftrennung und Detektion verschiedener Verbindungsklassen aus komplexen Matrices (z. B. Erdölproben). Dafür werden zwei GC-Säulen mit unterschiedlicher Polarität über einen Modulator miteinander gekoppelt.

Auswertung der Massenspektren

Voraussetzung für die Bestimmung der Masse m ist die Kenntnis der Ladung q des Ions, denn die Analysatoren können die Ionen nur nach dem Verhältnis m/q trennen. q ist jedoch immer ein ganzzahliges Vielfaches der Elementarladung e: q = z·e, und meistens ist z = +1 (einfach positiv geladen). Als Einheit von m/q wurde das Thomson Th vorgeschlagen: [m/q] = Th.

Zunächst muss die Masse des Analyten bestimmt werden. Normalerweise ist das die Masse des schwersten detektierten Ions (Molekülpeak oder Molekülion). Allerdings ist bei der Elektronen-Ionisation oft ein Großteil der Moleküle gespalten. Testweise kann die Elektronenenergie verringert werden, so dass weniger Moleküle gespalten werden und der Molekülpeak deutlicher sichtbar wird.

Die weitere Auswertung basiert darauf, dass die Atome der verschiedenen chemischen Elemente einen unterschiedlichen Massendefekt haben. Daher kann aus einer sehr exakt bestimmten Masse eine Liste möglicher Summenformeln angegeben werden. Bei leichten Molekülen gibt es nur eine oder wenige passende Elementarzusammensetzungen. Mit steigender Masse oder zunehmender Anzahl an Heteroatomen steigt auch die Anzahl möglicher Kombinationen stark an.

Bei schwereren Molekülen stehen deshalb sehr viele mögliche Summenformeln zur Auswahl. Weitere Hinweise liefern die Isotopenzusammensetzungen der verschiedenen Elemente. So besteht der Kohlenstoff zum Beispiel zu 98,9 % aus 12C und zu 1,1 % aus 13C. Je nachdem, wie viele C-Atome im Molekül vorhanden sind, sind neben dem Hauptsignal im Spektrum Nebensignale zu finden, die vom Hauptpeak um 1 Th, 2 Th etc. entfernt sind und ein charakteristisches Intensitätsverhältnis zum Hauptsignal haben. Halogene wie Chlor und Brom haben ebenfalls charakteristische Isotopenverhältnisse, die zur Identifizierung benutzt werden können.

Die genannten Methoden sind auch auf die Bruchstücke anwendbar. Moleküle brechen oft an charakteristischen Stellen. Aus der Masse der Bruchstücke und evtl. weiteren Informationen kann schließlich die Strukturformel bestimmt werden.

 
Beispiel eines Massenspektrums: Tetrachlordibenzofuran EI-positiv ionisiert


Dabei helfen vor allem bei mit positiver EI-Ionisierung erstellten Massenspektren auch Massenspektrenbibliotheken. Die bekanntesten sind unter den Kürzeln ihrer Vertreiber die Wiley- und die NIST-Massenspektrenbibliotheken. Durch den Peak Counting Score kann eine Identifizierung erfolgen.

Die Quantifizierung von Verbindungen wird bei der Massenspektrometrie dadurch erleichtert, dass bei der Analytik isotopenmarkierte (13C-gemarkierte oder deuterierte) interne Standards verwendet werden können.

Ein Problem bei der Datenauswertung stellen die proprietären Datenformate der einzelnen Gerätehersteller dar. Die Daten werden in eigenen Binärdatenformaten vorgehalten. Meist werden vom jeweiligen Hersteller in die eigene Steuerungs- und Managementsoftware integrierte Auswertungsprogramme mitgeliefert. Um Programme von Dritten zu benutzen, bedarf es oft der Datenkonvertierung zum Datenexport, für die es im Bereich der Forschung frei erhältliche Lösungen gibt.

Anwendungen

Die Massenspektroskopie dient in der Analytik bzw. der analytischen Chemie als Analyseverfahren zur Bestimmung chemischer Elemente oder Verbindungen. In dieser Form werden Massenspektrometer in vielen Bereichen der Naturwissenschaften und der Technik für die Analyse von Materialien eingesetzt, unter anderem in der Chemie, Biologie, Archäologie, Klimatologie.

Auch in der Teilchenphysik werden Massenspektrometer verwendet. In diesem Bereich ist das Ziel jedoch weniger die Analyse von chemischen Elementen sondern die Ermittlung der Massen von Elementarteilchen oder Atomkernen sowie der Detektion von noch unbekannten Teilchen.


Chemie

Für einen Analyten (die zu testende Substanz) wird die Häufigkeit, mit der geladene Moleküle (Ionen) und deren Massenfragmente auftreten, bestimmt. Die Massenspektrometrie ist eine wichtige Methode der analytischen Chemie bei der Aufklärung der Struktur und Zusammensetzung von Verbindungen und Gemischen. Der qualitative (Erkennung von unbekannten Substanzen) und quantitative (wie viel Substanz einer Verbindung ist vorhanden) Nachweis sehr kleiner Substanzmengen (ca. > 10−15 g = 1 fg (Femtogramm)) ist möglich.

Archäologie

Isotopenverhältnisse einiger Elemente erlauben Rückschlüsse auf die Ernährung der Menschen, deren Knochen untersucht werden. Siehe auch Isotopenuntersuchung. Das Isotopenverhältnis von Kohlenstoff 14C zu 12C im organischen Material von archäologischen Funden erlaubt es die Zeit seit der pflanzlichen Bildung der vermessenen Substanz zu ermitteln. Zur Messung von 14C wird die Beschleuniger-Massenspektrometrie herangezogen.

Biologie

Massenspektrometrie wird in der Proteomik und Metabolomik verwendet, die Verwendung entspricht weitgehend jener in der Chemie. Biologische Proben, insbesondere Proteine, verlangen jedoch aufgrund der Molekülgröße und der speziellen Fragestellung (Identität, Sequenz, chemische Modifikation) bei der Aufklärung von systemischen Zusammenhängen eine besondere Probenvorbereitung und Messmethodik.

Klimatologie

Das Verhältnis der Häufigkeit bestimmter Isotope in Proben von Sedimenten und Eisbohrkernen lässt Rückschlüsse auf das Klima der Vergangenheit zu. Zum Beispiel verdampft Wasser, das das Isotop 16O enthält leichter als solches, das das Isotop 18O enthält. Eiszeiten, bei denen große Mengen des Wassers als Eisschild dem Wasserkreislauf entzogen sind, verschieben die Häufigkeit dieser Isotope im Meer und damit auch im neu fallenden Schnee. Aus der Sauerstoff-Isotopenstufe kann auf die Menge des Inlandeises zu der Zeit geschlossen werden, als die Probe gebildet wurde.

Technik

Die Massenspektroskopie wird auch in vielen technischen Bereichen genutzt. Sie kann beispielsweise bei der Endpunkterkennung von Ätzprozessen eingesetzt werden. Ein andere Anwendungsbereich ist die Einstellung und Optimierung der Gaszufuhr bei Beschichtungsprozessen (genauer chemische Gasphasenabscheidung), hierbei wird das Abgas nach der Reaktion hinsichtlich unverbrauchter Reaktionsgase untersucht und die Gaszufuhr entsprechend angepasst. Die Massenspektroskopie kann aber auch zur Analyse der abgeschichtenen Materialien eingesetzt werden. Dabei können mithilfe von SIMS auch Tiefenprofile erstellt werden, dies wird unter anderem bei der Analyse von dünnen Schichten eingesetzt.

Literatur

Allgemein

  • Herbert Budzikiewicz, Mathias Schäfer: Massenspektrometrie – Eine Einführung. Wiley-VCH, Weinheim 2005, ISBN 978-3-527-30822-4.
  • Hans-Joachim Hübschmann: Handbook of GC/MS, Fundamentals and Applications. 2. rev. Ed. Wiley-VCH Verlagsgesellschaft mbH, Weinheim 2008, ISBN 978-3-527-31427-0.
  • Fred W. McLafferty und Frantisek Turecek (Deutsche Übersetzung): Interpretation von Massenspektren, 4. Ed., Spektrum Akademischer Verlag GmbH, Heidelberg 1995, ISBN 0-935702-25-3.
  • Andreas M. Boehm et al.: Command Line Tool for Calculating Theoretical MS Spectra for Given Sequences. Bioinformatics, 2004. 20(16): 2889-2891; doi:10.1093/bioinformatics/bth328.
  • Alexander M. Lawson (Editor): Mass Spectrometry - Clinical Biochemistry - Principles/Methods/Applications. Walter de Gruyter & Co., Berlin/New York 1989, ISBN 3-11-007751-5.

Spektrensammlungen

Spektrensammlungen liegen sowohl in gedruckten Werken als auch in gerätekompatiblen Dateiformaten vor. Letztere werden heute meist bereits mit den Geräten angeboten und für die komfortable Auswertung von unbekannten Massenspektren eingesetzt.

  • M. Spiteller, G. Spiteller: Massenspektrensammlung von Lösungsmitteln, Verunreinigungen, Säulenbelegmaterialien und einfachen aliphatischen Verbindungen, Springer Verlag Wien, New York (1973), ISBN 3-211-81117-6
  • A. Cornu, R. Massot: Compilation of Mass Spectral Data, Index de Spectres de Masse, Vol. 1 & Vol. 2, 2. Ed., Heyden & Son Ltd. London, Philadelphia, Rheine, (1979) ISBN 0-85501-086-X
  • K. Pfleger, H. Maurer, A. Weber: Mass Spectral and GC Data of Drugs, Poisons and Their Metabolites, Part I & II, VCH Verlagsgesellschaft mbH, Weinheim (1985), ISBN 3-527-26303-9
  • NIST Standard Reference Database 1A, NIST/EPA/NIH Mass Spectral Library with Search Program: (Data Version: NIST 08, Software Version 2.0f) NIST-Spektrensammlung, auch unter Einschluss von Designerdrogen verfügbar.

Quellen

  • W. Barger: Schulungsunterlagen zum ICP-MS Kurs 2006. LAS PerkinElmer (Germany) GmbH, Rodgau, unveröffentlicht.
  • R. S. Houk, V. A. Fassel, G. D. Flesch, A. L. Gray, E. Taylor: Inductively Coupled Argon Plasma for Mass Spectrometric Determination of Trace Elements. In: Analytical Chemistry. 1980, 52, S. 2283.
  • D. Skoog, J. Leary: Instrumentelle Analytik. Grundlagen, Geräte, Anwendung. Berlin 1996. (dt. Übersetzung der 4. Auflage von Principles of Instrumental Analysis, Orlando 1992).
  • S. M. Nelms: ICP Mass Spectrometry Handbook. Oxford 2005.
  • H. E. Taylor: Inductively Coupled Plasma-Mass Spectrometry. San Diego 2001.
  • R. Thomas: Practica Guide to ICP-MS. New York, 2004.

Siehe auch

Einzelnachweise

  1. E. Goldstein: Canalstrahlen. In: Sitzungsbericht der Preussischen Akademie der Wissenschaften. Band 691, 1886, S. 691–699.
  2. E. Rückardt: Zur Erinnerung an Wilhelm Wien bei der 25. Wiederkehr seines Todestages. In: Die Naturwissenschaften. 42. Jahrgang, Heft 3, 1955, S. 57–62 doi:10.1007/BF00589524.
  3. E. Rückhardt: Zur Entdeckung der Kanalstrahlen vor fünfzig Jahren. In: Die Naturwissenschaften. 24. Jahrgang, Heft 30, 1936, S. 465–467, doi:10.1007/BF01473963.
  4. J. J. Thomson: Cathode Rays. In: Philosophical Magazine. 44, 1897, S. 293, doi:10.1080/14786431003659214 (facsimile von Stephen Wright, Classical Scientific Papers, Physics, 1964).
  5. J. J. Thomson: Rays of positive electricity. In: Proceeding of the Royal Society A. 89, 1913, S. 1–20 (Digitalisat auf JSTOR, wie exzerpiert in Henry A. Boorse, Lloyd Motz: 'The World of the Atom. Vol 1, 1966 PDF).
  6. F. W. Aston: Kanalstrahlen und Atomphysik. In: Die Naturwissenschaften. 24. Jahrgang, Heft 30, 1936, S. 467–469, doi:10.1007/BF01473964.

Vorlage:Link FA