Diskussion:Schwache Topologie

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 4. Juni 2010 um 17:24 Uhr durch 138.232.64.105 (Diskussion) (Definition zu einschränkend). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 16 Jahren von Leonard Vertighel in Abschnitt 'Ein Beispiel mit Konsequenzen'

Schwache Topologie ist ein stub.

Ich habe den Artikel aus der englischen Version weak topology übertragen und dabei Kürzungen vorgenommen (der weak*-Teil, in dem ich mich zu wenig auskenne, fehlt.). Daher habe ich auch (noch) keine Quellenangaben. --KleinKlio 01:37, 22. Sep 2006 (CEST)


Ich habe den Artikel etwas erweitert und dabei die Sachen rausgenommen, die eigentlich nicht hierhin gehören, wie zum Beispiel die Erklärungen zum Dualraum und zur Normtopologie. Und die schwach*-Topologie gehört meines Erachtens auch in einen eigenen Artikel. --Jckr 21:13, 23. Sep 2006 (CEST)

Achtung Kreisverweis!

Der Verweis

  • Schwache Konvergenz: Eine Folge heißt schwach konvergent, wenn sie in der schwachen Topologie konvergiert.

im Abschnitt Verwandte Begriffe geht auf eine BKL die mit

auf diesen Artikel hier zurückverweist. --KleinKlio 16:09, 24. Sep 2006 (CEST)

Ich hatte in schwache Konvergenz etwas geschrieben (das hier), was später von Benutzer:NeoUrfahraner gelöscht wurde. Ich habe deswegen mal bei ihm angefragt. Ggf. könnte man es dort wiederherstellen oder in diesen Artikel einbauen. --Jckr 17:57, 24. Sep 2006 (CEST)

Ich habe zwar schon auf Benutzer_Diskussion:NeoUrfahraner#Schwache_Konvergenz kurz geantwortet, aber hier ist wohl der bessere Platz, um das auszudiskutieren. Die Aussagen zur schwachen Topologie sollten meines Erachtens nicht verstreut, sondern gemeinsam in einem Artikel, am besten in diesem hier, stehen. Die schwache Konvergenz in der Stochastik hat zwar den gleichen Namen, ist aber ganz anders definiert, daher sollte Schwache Konvergenz einfach nur eine Begriffsklärung sein. Den Kreisverweis auf Schwache Konvergenz ersetze ich durch einen Verweis auf Konvergenz in Verteilung. Was den Beitrag von Jckr in Schwache Konvergenz betrifft, würde ich es begrüßen, in hier einzubauen. --NeoUrfahraner 09:16, 25. Sep 2006 (CEST)

Schreibung

Müsste es nicht nach Regeln der Durchkoppelung „Schwach*-Topologie“ und nicht „schwach*-Topologie“ heißen? In Büchern gesehen habe ich beides. --Erzbischof 13:31, 29. Okt. 2006 (CET)Beantworten

Im Prinzip hast du wohl recht. Ich habe aber in den meisten Büchern/Texten die Schreibweise mit kleinem „s“ gesehen. Von mir aus können wir es ändern. --Jckr 18:37, 29. Okt. 2006 (CET)Beantworten
Vielleicht ist die Kleinschreibung gerechtfertigt, wenn man „schwach*“ als Symbol und nicht als Adjektiv auffasst, und „schwach*-Topologie“ wie z.B. „σ-Algebra“ behandelt. Dann können wir es so halten, wie es üblicher ist. --Erzbischof 14:30, 3. Nov. 2006 (CET)Beantworten

'Grobheit' (Eigenschaften)

Was genau heißt 'Die schwache Topologie ist gröber als die durch die Norm induzierte Topologie'? Ich denke, daß die schwache Topologie nicht unbedingt echt gröber sein muß als die Normtopologie. Nicht feiner wäre eine eindeutigere Formulierung... --Acfrinke 03:06, 7. Sep. 2007 (CEST)Beantworten

Nein. Da die Gröber- bzw. Feiner-Beziehung die Topologien nicht total ordnen, sondern nur partiell. "Gröber" wird so definiert, dass Gleichheit mit eingeschlossen ist. Aus genau diesem Grund. Eine Topologie, die nur "nicht feiner" ist als die andere braucht mit dieser überhaupt nichts zu tun zu haben. --Digamma 13:15, 8. Sep. 2007 (CEST)Beantworten

'Ein Beispiel mit Konsequenzen'

mag fuer Physiker interessant sein, ist aber mathematisch mehr als fragwuerdig.

Womit man bei schwacher Konvergenz in einem Raum testet, ist durch den Dualraum festgelegt; man hat hier nicht die Wahl, einfach mal nur eine Teilmenge oder ein paar andere Elemente zu nehmen. Fuer (schwache Konvergenz in) L^2 heisst das: Testen mit L^2. Fuer (schwach-*-Konvergenz im Raum der) Distributionen: Testen mit Testfunktionen. Die angesprochenen Konsequenzen beruhen also auf unsauberer Verwendung der Begriffe und dem Durcheinanderwerfen verschiedener Raeume.

Was soll es bedeuten, dass der zugehoerige Konvergenzbegriff nur der in C benutzten Topologie entspricht? Schwach konvergent Folgen in L^2 muessen nicht punktweise konvergieren; sie koennen z. B. oszillieren.

Vorschlag: Absatz einfach loeschen.

Unterstuetze diesen Vorschlag. Wieso sind in einem Hilbertraum H nur quadratintegrierbare Funktionen zugelassen? Das gilt, falls H = L2. Insgesamt wird hier nicht sehr verstaendlich argumentiert. Wenn keine weiteren Einwaende kommen, werde ich den Absatz loeschen. --Bananenkiste 19:17, 29. Jul. 2008 (CET)Beantworten
Ich stimme dem ebenfalls zu und habe den Abschnitt gelöscht. -“Ricordati…” 16:37, 6. Feb. 2009 (CET)Beantworten

Definition zu einschränkend

Ich rege hiermit an die Definition aus dem Gefängnis der normierten Räume zu befreien. Die schwache Topologie lässt sich ohne weitere Probleme für beliebige lokalkonvexe topologische Vektorräume betrachten. --~~