Erdős-Moser-Gleichung

Gleichung aus der Zahlentheorie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 11. März 2010 um 16:38 Uhr durch 192.68.254.7 (Diskussion) (L. Moser, On the diophantine equation 1^n+2^n+3^n+...+(m-1)^n=m^n. Scripta Math. 19 (1953). 84-88.). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Die Erdős-Moser-Gleichung aus der Zahlentheorie ähnelt dem großen fermatschen Satz und lautet

mit und .

Für ist die einzige Lösung und für ist die einzige Lösung . Weitere Lösungen sind nicht bekannt.

Die Vermutung

Der Mathematiker Paul Erdős vermutete, dass für die Gleichung keine weiteren Lösungen als die beiden oben angegebenen existieren.

Im Jahr 1953 zeigte Leo Moser, dass im Fall   für eine Lösung der Gleichung   gelten muss. Er benutzte dazu Methoden der analytischen Zahlentheorie und kam ohne größere arithmetische Rechnungen aus. Durch massiven Rechnereinsatz konnten im Jahr 1999 bestimmte Zahlen genau berechnet werden, die Moser in seinem Beweis nur grob abgeschätzt hatte. Damit verbesserte sich die Schranke auf  .

Der Fall

Für   sieht die Gleichung folgendermaßen aus:

 

Die gaußsche Summenformel besagt  . Damit ergibt sich:

 

Die einzigen Lösungen dieser Gleichung sind   und  . Wegen   bleibt nur die zweite Lösung übrig.