Diskussion:Mathematik

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 3. April 2005 um 01:21 Uhr durch Gunther (Diskussion | Beiträge) (Betreff:Revert). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Diskussionen, die bis Mitte Oktober 2004 begonnen wurden, sind nach Diskussion:Mathematik/Archiv verschoben worden. Einige davon sind möglicherweise noch nicht abgeschlossen. Diese können dort oder hier fortgesetzt werden. --SirJective 15:30, 17. Okt 2004 (CEST)

Da stimmt was nicht

Welche Zahl muss man zu 3 addieren, um 5 zu erhalten?". Die systematische Lösung solcher Aufgaben aber erfordert die Einführung eines neuen Konzepts: der Subtraktion. Sobald aber die Subtraktion definiert ist, kann man die Frage stellen "was ist 3 minus 5", die auf eine negative Zahl und damit bereits über die Grundschulmathematik hinausführt.

Die Fragestellung "Welche Zahl muss man zu 3 addieren, um 5 zu erhalten", lässt sich mathematisch als 3 + x = 5 darstellen, löst man dies nach x auf, so erhält man x = 5 - 3, aber sicher nicht x = 3 - 5

Haarspalterei. Klar ist man bei der Einführung negativer Zahlen über die Grundschulmathematik hinaus. Was ist daran neu? Die gelehrte Mathematik schreitet immer in Zusammenhang mit komplexeren Fragestellungen voran. Deswegen sind aber die Grundrechenarten trotzdem Stoff der Grundschule.B.M.

Geisteswissenschaft mit Anwendungsbezug

Zu den wichtigsten Kennzeichen der Mathematik gehört, dass mathematische Aussagen durch reine Gedankenoperationen auseinander hervorgebracht oder aufeinander zurückgeführt werden können.

Das ist trivial, Aussagen (selbst völlig absurde) kann man immer durch »reine Gedankenooperationen« (was m.E. besoffen Spinnen einschließt) in andere umwandeln.

Deshalb ist Mathematik keine Naturwissenschaft, sondern eine Geisteswissenschaft (allerdings gehört der Begriff "Geisteswissenschaft" einer spezifisch deutschen akademischen Tradition an; im englischen und französischen Sprachraum wird Mathematik als "science" eingestuft).

Ein glattes non-sequitur, als wenn in den Naturwissenschaften nicht logisch argumentiert würde. Fünf, setzen!

Durch die Allgemeingültigkeit der Mathematik ist sie in allen Wissenschaften anwendbar, die ausreichend formalisert sind. Daraus ergibt sich ein enges Wechselspiel mit Anwendungen in empirischen Wissenschaften.

Ex falso sequitur quodlibet. Es ist doch offenbarer Unsinn, für die Mathematik »Allgemeingültigkeit« zu beanspruchen, jedenfalls fällt es schwer, sich einen Beweis dafür vorzustellen. Ptrs 00:59, 19. Okt 2004 (CEST)
Wie waers wenn Du Deinen Ton mal aendern wuerdest? --DaTroll 10:27, 19. Okt 2004 (CEST)

ad hominem

Seit Monaten steht in diesem Artikel, daß Mathematik eine Geisteswissenschaft sei, was damit begründet wird, daß sie keine Naturwissenschaft sei, was wiederum damit begründet wird, daß die Gegenstände der Naturwissenschaften nicht abstrakt seien.

Sie gruppieren also die Mathematik zusammen mit Theologie, Kunstgeschichte und Jurisprudenz, die alle einen vergleichbaren Methodenkanon haben, der, wie durch Beobachtung leicht zu erheben ist, ungleich dem Methodenkanon der Mathematik ist. Das die Mathematiker ihren Hilbert nicht so auslegen, wie die Theologen ihren Paulus, ist Ihnen offensichtlich unbekannt oder aber egal.

Sie folgern, daß Mathematik eine Geisteswissenschaft ist, weil sie keine Naturwissenschaft sei. Das ist falsch geschlossen, denn Sie müßten wissen, daß diese beiden Klassen die Wissenschaften partitionieren. Wo ist der Beweis dafür?

Sie behaupten ferner, die Gegenstände der Geisteswissenschaften -- z.B. das Porträt des Grafen Harry Kessler von Edvard Munch, das ich gestern in Weimar sah -- seien jedenfalls abstrakter als die der Naturwissenschaften, das elektromagnetische Feld etwa, wozu ich nicht mehr viel zu sagen weiß.

Das sind doch alles Konfabulationen.

Nun waren Sie so entgegenkommend, dieses debile Geschwätz, es geht ja noch einige Zeit so weiter, als im Vergleich mit dem, was ich geschrieben habe, »einfach sprachlich und inhaltlich besser« zu bezeichnen, wozu man sich ohne weiteres seinen Teil denken mag. Ptrs 23:52, 20. Okt 2004 (CEST)

Solange Sie hier so arrogant und beleidigend daherkommen, werde ich den Teufel tun, meine Zeit in eine "Diskussion" mit ihnen zu investieren. ---DaTroll 11:22, 21. Okt 2004 (CEST)
Sein Diskussionsstil ist nicht der tollste, aber er hat Argumente: Nur weil die Mathematik keine Naturwissenschaft ist, heißt das nicht unbedingt, dass sie eine Geistenswissenschaft ist. Die Diskussion hatten wir ja vorm archivieren schon mal und da gab es auch nicht viele, die unbedingt auf der Geisteswissenschaft beharren wollten. Konklusion war eigentlich: "Wir wissen nicht was die Mathematik für eine Wissenschaft ist und auch die Quellen sind widersprüchlich". Das sollte auch im Artikel stehen. --Blubbalutsch 21:32, 21. Okt 2004 (CEST)
Die Diskussion ist mit der Archivierung nicht automatisch begraben - wie ich anlässlich der Archivierung schrieb. (Vielleicht hätte ich nicht "Archiv" sondern "Ältere Diskussionen" schreiben sollen?) Ja, in der "alten" Diskussion kamen wir zu dem (Zwischen-)Ergebnis (übrigens mit Ptrs), dass wir die Mathematik nicht in das klassische Schema der Natur- und Geisteswissenschaften einordnen können. --SirJective 00:31, 22. Okt 2004 (CEST)
Ich selbst habe mich ja an der Diskussion damals beteiligt und bin ebenfalls der Meinung, dass der derzeitige Artikel noch nicht richtig gut ist. Halten wir mal fest, wo wir uns einig sind: Mathematik ist keine Naturwissenschaft. Trotzdem ist sie den Naturwissenschaften am engsten verwandt und ueblicherweise sind mathematische Fachbereiche der naturwissenschaftlichen Fakultaet zugeordnet, weswegen in Mathematik der Dr. rer. nat. vergeben wird. Mir persoenlich wurde im Laufe des Studiums beigebracht, dass die Mathematik der Philosophie am aehnlichsten ist, weswegen sie als Geisteswissenschaft gilt. Meine eigene Doktorarbeit beinhaltet aber zum Teil auch Experimente, Empirie und Heuristiken. Ich sehe das ganze ehrlich gesagt relativ emotionslos, weswegen ich die Aussagen gerne auf eine solidere Grundlage stellen wuerde. Bisher habe ich dazu aber nicht viel gefunden (bis auf das in der alten Diskussion) und sonst konnte bisher auch niemand (insbesondere Ptrs) mit Quellen rueberkommen. Viele Gruesse --DaTroll 10:44, 22. Okt 2004 (CEST)
Ich habe versucht mal die verschiedenen Standpunkte im Artikel zusammenzufassen, auch wenn es bestimmt nicht perfekt formuliert ist, ist es IMHO besser, als ewig zu postulieren, etwas treffe zu, was äußerst umstritten ist. --Blubbalutsch 19:42, 22. Okt 2004 (CEST)

Mathematik vielleicht doch eine Naturwissenschaft (?)

Nun sollte ich vielleicht vorweg sagen, dass ich kein Dr. rer. nat. bin, aber dennoch bin ich der Ansicht, dass die Mathematik keineswegs eine Geisteswissenschaft ist. Die Physik bspw. führt Beweise mittels der Mathematik durch, die Mathematik bildet die Grundlage für solche Beweise. Aber auch in der Mathematik muss bewiesen werden und auch die Mathematik beschreibt mit ihrer Geometrie als Teilgebiet durchaus die Natur, warum also keine Naturwissenschaft? Auch die Mathematik führt Experimente durch, s. Experimentelle Mathematik! Die Formel für die Flächenberechnung von Körpern oder auch die simple Längenabmessung von einer Strecke kann durchaus in einem Experiment nachgeprüft werden. Irgendwie sehe ich die Mathematik doch eher den Naturwissenschaften zugewandter als den Geisteswissenschaften. Was hat die Mathematik mit Philosophie zu tun? Aber sie hat sehr wohl was mit der Physik oder der Chemie zu tun! -- Anonymuus

Mathematik ist abstraktes Werkzeug, dass vom Menschen geschaffen wurde. Sie beschäftigt sich nicht mit der Natur, sondern nur mit sich selbst. Sie dient den Naturwissenschaften bei der Abbildung (Beschreibung) der Natur (Realität). Hadhuey 23:06, 21. Okt 2004 (CEST)

Was hat die Mathematik mit Philosophie zu tun?: Die Logik (Aussagenlogik, Prädikatenlogik). Wohl noch weitere Berührungspunkte. HannesH 23:12, 21. Okt 2004 (CEST)

Naja, was die Logik angeht, da wäre ich mal vorsichtig, es ist auch logisch, dass sich negative und positive Ladungen aufheben, das passt genauso gut zu den Naturwissenschaften!

Klar ist sie ein "Werkzeug" der Naturwissenschaften, deswegen gehört sie ja auch zu den Naturwissenschaften. Ich leider immer noch keinen Zusammenhang erkennen, den die Mathematik zu den Geisteswissenschaften hat. -- Anonymus

Ein Diskussionsfaden zum gleichen Thema: http://www.philo-forum.de/philoforum/viewtopic.html?t=5759&postdays=0&postorder=asc&topic_view=&start=50

Bemerkenswert sicher auch die Aussage: mathematik ist eine geisteswissenschaft. grund: mathematiker brauchen keine experimente, um ihre sätze zu beweisen. ihnen reicht bleistift und papier.

Weiter: http://commonweb.unifr.ch/math/colloquium/abstracts/kaupB.html Was ist Mathematik? Abschiedsvorlesung von Prof. Burchard Kaup; er setzt folgendes Zitat an den Anfang: Mathematik ist keine Naturwissenschaft und keine Geisteswissenschaft. Mathematiker sind wie Künstler: sie schaffen Geistesdinge. (H.Grauert).

HannesH 23:26, 21. Okt 2004 (CEST)

Mathematik ist ein rein geistiges Werk des Menschen. Er hat es geschaffen, um die Natur zu beschreiben. Die Natur selbst kennt keine Mathematik. Die Mathematik kommt auch ohne Natur aus. Sie ist in in sich geschlossenes geistiges Gebilde. Hadhuey 00:07, 22. Okt 2004 (CEST)

Da bin ich etwas anderer Meinung. Nicht das ich meinen Würde, die Mathematik sei in sich nicht geschlossen. Sie ist es, wie ein Universum in sich geschlossen ist. Auch würde ich Dir nich darin widersprechen, das die Mathematik ohne Natur auskommt. Sie tut es, und das sogar ohne den Menschen, der Teil der Natur ist. Was Mathematik nicht ist, ist das sie vom Menschen gemacht wäre. Der Mensch hat Namen, Bezeichnungen und Symbole für etwas gefunden, was schon immer da war, und noch da sein wird, wenn es keine Menschen mehr gibt. --Arbol01 03:01, 22. Okt 2004 (CEST)
Arbol, diese Sichtweise ist eine von mehreren möglichen. Sie erinnert mich an Platos Ideenlehre. Aber es gibt auch andere Sichtweisen, z.B. dass Mathematik ein reines Produkt unseres Geistes ist, das außerhalb des menschlichen Geistes nicht existiert, und alle schriftlichen Dokumente dienen nur dazu, dieselbe Mathematik im Geistes des Lesers zu erzeugen (so habe ich Brouwers Intuitionismus verstanden).
Als Laie lässt sich so wunderbar diskutieren *g* Ich habe keine Ahnung von philosophischen Betrachtungen über Mathematik, daher kommen alle meine Aussagen dazu ohne Gewähr und mit "mMn": Mathematik ist z.T. eine Kunstform und z.T. eine Wissenschaft. --SirJective 13:32, 22. Okt 2004 (CEST)
Wenn Brouwers Intuitionismus korrekt ist/wäre, muß müßte es mehrere Mathematiken geben, die zu einander Prim wären. Ich kenne aber nur eine Mathematik. --Arbol01 14:23, 22. Okt 2004 (CEST)


Analysis

Die Analysis beschaeftigt sich vor allem mit Grenzwerten. Die zentrale Schwierigkeit mit dem Grenzwert ist das unendlich Kleine (siehe z.B. Achilles und die Schildkröte) und das ist auch das, was Newton und Leibniz mit der Infinitesimalrechnung gechaffen haben. Ich halte den Satz deswegen so wie er da steht fuer sehr gut.

Funktionen sind nebenbei keine Analysis-spezifischen Objekte. Die klassische Algebra untersucht Loesungen von Gleichungen, sprich Nullstellen von Funktionen und die Lineare Algebra Lineare Abbildungen. Viele Gruesse --DaTroll 15:43, 29. Nov 2004 (CET)

Funktionen sind nebenbei keine Analysis-spezifischen Objekte. Die klassische Algebra untersucht Loesungen von Gleichungen, sprich Nullstellen von Funktionen und die Lineare Algebra Lineare Abbildungen.
Dazu möchte ich äussern, das die Gebiete Analysis und Algebra, wie alle Wissenschaftlichen Unterteilungen, wilkürlich gewählt worden sind. Man hätte das Ganze auch völlig anders unterteilen können.
Tatsache ist, das alles mit allem zusammenhängt, und das sowohl Du Datroll recht hast, wie auch der anonyme Benutzer, den Du revertet hast.
Ich für meinen Teil versuche, diese Unterteilungen so weit wie möglichst zu vermeiden, weshalb ich wahrscheinlich in diesem Artikel Mathematik nicht ein Wort schreiben werden. --Arbol01 16:17, 29. Nov 2004 (CET)
Da muss ich widersprechen: Die Unterteilungen sind nicht willkuerlich (wie alle wissenschaftlichen Unterteilungen), sondern historisch (wie viele wissenschaftliche Unterteilungen). Ferner ist es immer noch sinnvoll diese Begriffe zu benutzen, damit man miteinander reden kann. Dass alles mit allem zusammenhaengt ist da irgendwie keine Basis ;-) In Wahrheit ist es ja so, dass sich die mathematischen Werkzeuge in unterschiedlichen Bereichen der Mathematik drastisch unterscheiden. Viele Gruesse --DaTroll 17:03, 29. Nov 2004 (CET)
Die historische Entwicklung interessiert mich nur teilweise, daß sich die mathematischen Werkzeuge in unterschiedlichen Bereichen drastisch unterscheiden bezweifele ich, und wenn Du meinst, das die Teilgebiete nicht willkürlich festgelegt worden sind, dann wirst Du dir in zukunft die Augen über die Veränderungen, die jetzt schon in Physik und Chemie stattfinden, reiben. Guten Morgen --Arbol01 17:55, 29. Nov 2004 (CET)


Zunächst möchte ich DaTroll zustimmen, dasz der Grenzwertbegriff den Kern der Analysis (wie auch immer man eine willkürliche Eingrenzung dieses Teilgebietes in Einklang mit historisch erwachsenen Vorstellungen vornehmen möchte) besser trifft. Aber eine dahingehende Änderung wurde als 'nicht laienfreundlich' reverted. Dies kann ich auch einsehen, bin aber der Meinung, dasz es nicht statthaft ist zugunsten von scheinbar leichterem Verständnis auf Richtigkeit verzichtet. Wenn also ein Laie ein Problem nicht verstehen kann, ist es meiner Ansicht nach notwendig ihm anhand korrekter Aussagen die Möglichkeit geben zu verstehen und nicht ihn durch schwammige und irreführende Beschreibungen ruhig zu stellen.
Die These, Analysis beschäftige sich mit Funktionen, war eine Ausweichmöglichkeit, die ich wie folgt begründen würde. Im Allgemeinen beschäftigt man sich nur in der Mengenlehre mit Funktionen, als eindeutige Zuordnungen von einer Menge in eine andere. Die meisten anderen Teilgebiete der Mathematik betrachten eher Abbildungen, wobei der feine Unterschied darin liegt, dasz bei Abbildungen auf Definitionsbereich und Wertebereich eine Struktur vorgegeben ist, die gestattet von einer stetigen, konvexen oder homomorphen Abbildung zu sprechen ohne jeweils die entsprechenden Räume und ihre Struktur nennen zu müssen, weil die Abbildung diese Information enthält. Der Graph einer Abbildung   ist die Menge  . Diese Menge enthält keine Zusatzinformation über zugrundeliegende Strukturen, wohl aber die Zuordnungsvorschrift der Abbildung   und kann daher als eine Funktion interpretiert werden.
Die meisten Konzepte der klassischen Analysis ergaben sich durch das Studium der Schaubilder (Graphen) von Abbildungen - von Funktionen. Daher auch Begriffe wie konvergieren/Streben gegen, Asymptotik... Die weit verbreitete Identifikation der Begriffe Funktion und Abbildung ist innerhalb der Analysis schadlos allerdings m. E. nicht notwendig.
Ich vertrete nicht die Meinung, dasz die Untersuchung von Zeichnungen auf Papier eine wissenschaftliche Methode darstellt und das moderne Analytiker sich mit Funktionen herumschlagen. Allerdings hat sich abgesehen von Nichtmathematikern in Anfängervorlesungen und Autoren populärwissenschaftlicher Literatur seit 200 Jahren niemand mehr mit unendlich Kleinen Gröszen beschäftigt. Und diese Vorstellung führt so schnell auf Widersprüche (die auch das Durchdringen tatsächlicher, nicht durch diese Vorstellung hervorgerufene, Probleme behindern) dasz ich sie niemandem nahelegen möchte. -- unbekannter Benutzer [141.30.71.91] -- 1. Dez. 2004 (CET)
Der Abschnitt ist so etwas wie eine eierlegende Wollmilchsau. Er soll i) einen Ueberblick ueber die Teilgebiete geben, ii) einen Schnelldurchlauf durch die Entwicklung der Mathematik und iii) anschaulich machen, womit sich Mathematik eigentlich beschaeftigt. Dementsprechend schwierig ist es, das zu formulieren. Wenn ich unsere Diskussion kurz zusammenfassen darf: Das Rechnen mit dem unendlich Kleinen ist Dir zu ungenau. Der Grenzwert passt mir dafuer nicht gut in die Aufzaehlung wie sie bisher da ist. Vielleicht ist die Funktion wirklich ein guter Kompromiss. Vorschlag: "Die Untersuchung von Funktionen, ihrer Ableitungen und Integrale mittels infinitesimal kleiner Groessen"? Viele Gruessee --DaTroll 11:12, 2. Dez 2004 (CET)
Davon bin ich auch nicht sehr überzeugt, da eben die infinitesimal kleinen Groessen der Kern meiner Bauchschmerzen sind. Auszerdem würde ich der Laianfreundlichkeit halber Ableitungen durch Änderungsverhalten und Integrale durch Flächen ersetzen, da diese Begriffe ohne Kenntnis des Grenzwertbegriffes unverständlich sind. Mir schwebt als Kompromisz etwas in der Art des Folgenden vor. die Untersuchung von Funktionen, insbesondere Wachstum, Krümmung, Verhalten im Unendlichen und Flächeninhalte unter den Kurven. Das erscheint mir zwar noch nicht als Stein der Weisen, ist aber eine weichgekochte Version die vorläufig meine Zustimmung finden könnte.
Viele Grüsze zurück -- unbekannter Benutzer [141.30.71.91] 17:25 6. Dez. 2004 (CET)
Ich habe den Satz jetzt so (modulo Kleinigkeiten) in den Artikel uebernommen. Nebenbei: Du kannst in Diskussionen mittels ~~~~ unterschreiben. Viele Gruesse --DaTroll 13:55, 7. Dez 2004 (CET)

Ursprünglich verstand man unter Funktionen reelle oder komplexe Abbildungen, die durch »analytische Ausdrücke« (Euler) gegeben sind, wobei bekanntlich erst in der Cauchy-Zeit Klarheit über das Konvergenzverhalten von Reihen erzielt wurde (so daß man für die Zeit vorher kaum davon reden kann, der Grenzwertbegriff habe die Analysis dominiert). Es war aber schon für Euler notwendig, sog. »willkürliche« Funktionen ins Auge zu fassen, sie nicht mehr durch einen Ausdruck definiert werden konnten, was dann Dirichlet (1829) dazu führte, den heute üblichen Abbildungsbegriff einzuführen. Andererseits domonierte im 19. Jhdt. der Funktionenbegriff der Funktionentheorie die mathematische Praxis (»analytische Funktion«). Darin zeichnet sich die Herausbildung zweier neuer Fächer im 20. Jhdt. ab, nämlich der Topologie und der (reellen) Analysis. Es ist klar, daß heute der Grenzwertbegriff zur Topologie gehört, und dort wie viele andere ursprünglich analytische Begriffe seine Heimat gefunden hat. Klar ist auch, daß der zentrale Begriff, das Alpha und Omega der Analysis die Ableitung ist. In deren Definition kommt zugegebenermaßen ein Grenzübergang vor -- aber sie erschöpft sich nicht darin.

Interessanter ist die Frage, was der Abschnitt »Inhalte und Teilgebiete« zum Inhalt hat. Jedenfalls wohl keine verantwortbare Darstellung der Inhalte und Teilgebiete der heutigen Mathematik, wie sie, unbeschadet der Frage nach der prinzipiellen Problematik solcher Klassifikationen (q.v.), einem solchen Einleitungsartikel wohl anstünde, sondern eine idiosynkratische Liste historischer Schlagworte, mit denen was-weiß-ich für ein Eindruck erzeugt, sicher aber keine Erkenntnis vermittelt werden soll. Eine verantwortbare historische Darstellung ist dies jedenfalls auch nicht, dazu ist sie zu impressionistisch, unsystematisch und teils rundheraus irreführend. Ptrs 16:04, 1. Dez 2004 (CET)

Mein Gott, das habe ich noch gar nicht bemerkt gehabt. Da erschauert es einen ja. Wenn ich nur das zur Geometrie lese. Wo bleiben da die Fraktale, die nichteuklidsche Geometrie. Wo der Übergang zur Topologie (Torus, Möbius-Band, kleinsche Flasche)?
Wahrscheinlich ist in den anderen Bereichen ebenfalls etwas zu finden. Schüttel! --Arbol01 16:21, 1. Dez 2004 (CET)

Wiederholung "Philosophie"?

was genau soll denn an dem eingefügten Satz über die Philosophie eine Wiederholung sein? So wie es jetzt da steht, impliziert, dass die Philosophie eine Geisteswissenschaft ist. Darüber gibt es aber wiederum unterschiedliche Ansichten, dass sollte herausgearbeitet werden. --Blubbalutsch 16:32, 22. Jan 2005 (CET)

Das mit Wiederholung ist ein Unsinn. Ich habe Widerspruch gemeint. Zuerst steht nämlich als Fakt: da es mit der Philosophie auch eine Geisteswissenschaft gibt. Und dann wird davon geredet, dass darüber kein Konsens herrscht. Mir fällt jetzt aber auf die schnelle keine gute Lösung ein, das gut zu formulieren. Aber vielleicht hast du ja eine Idee. Viele Grüße, --Martin Rasmussen 00:21, 28. Jan 2005 (CET)

Gebiete

Eine vernünftige Beschreibung von Topologie fehlt.--Gunther 17:15, 2. Mär 2005 (CET)

Hilfswissenschaft

So abwertend der Begriff klingen mag, aber meiner Meinung nach ist die Mathematik eine Hilfswissenschaft - wenn auch nicht ausschließlich. Die Diskussion ob Geistes- oder Naturwissenschaft ist doch recht müßig. Warum es eine Naturwissenschaft sein soll kann ich allerdings auch nicht nachvollziehen, da die Natur nie in ihrer entwicklung die Mathematik benötigt hätte. Mathematik ist nur ein sehr effektives Hilfsmittel um die Natur zu beschreiben und deshalb meiner Meinung nach eine Hilfswissenschaft wie zum Beispiel auch die Informatik.

Genau weil diese Diskussion müßig ist, sollte man nicht versuchen, durch subjektive Ansichten die Diskussion von neuem anzuheizen. Die vorherige Formulierung war meines Erachtens besser und objektiver. --NeoUrfahraner 09:32, 21. Mär 2005 (CET)
Da stehen in der Tat ein paar zweifelhafte Dinge. Dass die Mathematik meist Teil der mathematisch-naturwissenschaftlichen Fakultät ist, die "Dr. rer. nat." vergibt, hat nichts mit der Frage zu tun, ob sie eine Naturwissenschaft ist (der Name der Fakultät erwähnt die Mathematik ja auch gesondert). Der Satz zu den Hilfswissenschaften ist in dieser Form nicht sinnvoll. Auch der anwendungsorientierte Mathematiker muss keine "Werte vorliegen" haben, bevor er arbeiten kann.--Gunther 11:14, 21. Mär 2005 (CET)
Habe mir die Unterschiede nochmal angeschauen: ich stimme für revert.--Gunther 11:20, 21. Mär 2005 (CET)
Ich habe auf die Version vom 17:17, 13. Mär 2005 zurückgestellt. Deine Änderung von 11:04 entspricht auch der Version Version vom 17:17, 13. Mär 2005; die restlichen Änderungen von Boogieman95028 sind meines Erachtens auch nicht wirklich erhaltenswert. --NeoUrfahraner 12:09, 21. Mär 2005 (CET)

Betreff:Revert

Deines Erachtens nach, soso. Das man als Mathematiker, auch als anwendungsorientierter solcher (was immer man sich darunter vorstellen kann) keine spezifischen Aussagen ohne spezifische Vorgaben treffen kann liegt wohl auf der Hand. Das ein Doktor in Mathematik als rerum naturalis verliehen wird hat überhaupt keinen Bezug dazu ob Mathematik eine Naturwissenschaft ist oder nicht? Mein Dozent war grade anderer Meinung aber du musst es ja wohl wissen. Hierüber könnte man durchaus kontrovers diskutieren, deshalb habe ich auch für alle drei Auslegungen die jeweiligen Argumente angegeben. Was ist in Punkto Hilfswissenschaft nicht Sinnvoll ist hast du auch nicht erwähnt. Die restlichen Veränderungen waren nicht sinnverändernd sondern nur in der Formulierung verändert worden, nungut. Das ist wohl wirklich Auslegungs- und Geschmackssache, wenn du meinst das hier ein revert angemessen ist dann würde ich auch gerne eine Begründung hören und zwar eine andere als du hälst es für nicht erhaltenswert. Das Erfolgskonzept von Open-Source ist dass keinem ein Zacken aus der Krone bricht wenn jemand anderes seine Beiträge verifiziert, denk mal drüber nach.

B.M.

Dass manche Teile der Mathematik enge Beziehungen zu den Anwendungen haben, wirst Du wohl nicht bestreiten wollen. Und die Mathematik kann durchaus den Hauptsatz der Differential- und Integralrechnung beweisen, ohne sich darum zu kümmern, wer den wo anwenden will. Auch die mathematischen Grundlagen des RSA-Kryptosystems gab es schon Jahrhunderte.
  • Was ich von dem "Dr. rer. nat."-Argument halte: s.o. Dein Dozent ist mir da herzlich egal.
  • Absatz "Naturwissenschaften": 1. Es gibt Unterschiede zwischen Modellen für die Natur und der Natur selbst. 2. Die Entwicklung mathematischer Beschreibungen der Natur ist Gegenstand der Physik. 3. Selbst die Physiker konnten noch nicht alles in der Natur wiederfinden, was Teil der Mathematik ist.
  • Der Absatz zu "Hilfswissenschaften": s.o., und das Ziel der (reinen) Mathematik sind auch nicht "andwendbare Erkenntnisse".
Inwiefern ist das Einführen von Tippfehlern einer sachlichen Auseinandersetzung zuträglich (Änderung von 17:11, 21. Mär 2005)?--Gunther 19:49, 21. Mär 2005 (CET)
Die Diskussion wird mir jetzt langsam zu blöde. Ich hab mich mit Sicherheit nicht hingesetzt und ein Paar Tippfehler eingefügt wie du das hier darstellst. Den engen Bezug zu den Anwendungen hab ich nie bestritten sondern sogar ausgeführt. Das das Ziel der reinen Mathematik nich unbedingt anwendbare Erkenntnisse sind heißt also dass sie nicht als Hilfswissenschaft für andere Disziplinen dienen kann? Schreib gar nicht erst zurück, ist mir jetzt eh zu blöd.

Boogieman

Was mich gestört hat, ist, dass Du die "Strukturwissenschaft bzw. Formalwissenschaft" entfernt hast, die mindestens genaus berechtigt wie "Hilfswissenschaft" sind (was immer das sein mag). "Hilfswissenschaft" hast Du ausdrücklich als Deine Meinung gekennzeichnet; Deine Meinung sei Dir nicht genommen; die Wikipedia ist aber keine Platz für persönliche Meinungen sondern für mehr oder weniger annerkannte Aussagen. Wenn Du ein paar mehr oder weniger bekannte Autoren nennen kannst, die die Mathematik als Hilfswissenschaft einordnen, kann man das gerne ergänzen. OK, die bisherigen Formulierungen sind auch nicht so sauber, aber zumindest bei [[Strukturwissenschaft] findet man einen Namen. Ansonsten: wie Du selber schreibst: "Die Diskussion ob Geistes- oder Naturwissenschaft ist doch recht müßig." Wir können jetzt diese müßige Diskussion von neuem beginnen; ich habe aber jedenfals kein Interesse daran. --NeoUrfahraner 00:43, 22. Mär 2005 (CET)
PS: welche Deiner anderen Änderungen sind Deiner Meinung nach so wichtig, dass sie den Artikel deutlich verbessern? Vielleicht kann man die eine oder andere übernehmen. Dass der Artikel wesentlich besser wird, wenn man "Menschen" durch "Studenten, Lehrende und Interessierte" ersetzt, glaube ich aber nicht. Meiner Meinung nach wird er dadurch sogar schlechter, aber das ist tatsächlich eine Frage des persönlichen Geschmacks. --NeoUrfahraner 00:51, 22. Mär 2005 (CET)
BoogieMan hat auf meiner Diskussionsseite seinen Standpunkt ausführlicher dargelegt. Ich denke, das löst auch ein paar Missverständnisse auf.--Gunther 00:56, 22. Mär 2005 (CET)
Die Unterschiede von Formal-, Struktur- oder Hilfswissenschaft herauszuarbeiten würde mir jetzt spontan auch schwer fallen. Wie Gunther schon erwähnt hat habe ich meinen Standpunkt auf seiner Diskussionsseite ausführlicher dargelegt, auch bezüglich der "Studenten, Lehrer und Interessierten" und vor allem der "Müßigen Diskussion". Ich kann deine Vorbehalte bezüglich der Einschränkung "Studenten..." verstehen, vielleicht verstehst du auch meine gegenüber dem Überbegriff "Menschen", wenn du mal auf Gunthers Diskussionsseite schaust. Was mich ziemlich gestört hat war ganz einfach der sofortige Revert ohne das sich vorher eine Diskussion entwickelt hat oder die Einträge in irgendeiner Form abgeändert wurden. Ich hätte erwartet das sich wenigstens irgendwo eine ernsthafte Diskussion entwickelt inwieweit das von mir geschriebene jetzt "nicht erhaltenswert" ist bzw. warum, da die bisherigen Formulierungen wie du ja selbst einräumst auch nicht so 100%ig eindeutig sind.
MfG. B.M.

Habe mich mal an einer neuen Fassung versucht, die eher die unterschiedlichen Aspekte der Mathematik als die (mMn müßige) Diskussion um eine endgültige Einordnung betont.--Gunther 01:21, 3. Apr 2005 (CEST)

Die Webseite wirkt auf mich auf den ersten Blick bei weitem nicht so seriös wie z.B. Matheplanet. Andere Meinungen?--Gunther 12:53, 22. Mär 2005 (CET)

Absolut. Ich nehme den Link wieder raus. Viele Gruesse --DaTroll 14:24, 22. Mär 2005 (CET)
Zustimm. "Hilfreich" sind viele Communities, und die Mitgliederzahl sagt nicht viel aus. Als Mitglied des M-Planeten und Ex-Mitglied des M-Boards sollte ich mich nicht hinreißen lassen, mich zur Seriösität des letzeren zu äußern. --SirJective 18:26, 22. Mär 2005 (CET)