Kongruenzsatz

Aussagen, anhand deren sich einfach die Kongruenz von Dreiecken nachweisen lässt
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 28. Januar 2010 um 19:25 Uhr durch Hagman (Diskussion | Beiträge) (Änderung 69916320 von 87.122.150.144 wurde rückgängig gemacht. keine Verbesserung). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Als Kongruenzsatz bezeichnet man in der euklidischen Geometrie Aussagen, anhand derer sich einfach die Kongruenz von Dreiecken nachweisen lässt.

  • SSS-Satz: Zwei Dreiecke, die in ihren drei Seitenlängen übereinstimmen, sind kongruent.
  • WSW-Satz: Zwei Dreiecke, die in einer Seitenlänge und in den dieser Seite anliegenden Winkeln übereinstimmen, sind kongruent.
  • SWS-Satz: Zwei Dreiecke, die in zwei Seitenlängen und in dem eingeschlossenen Winkel übereinstimmen, sind kongruent.
  • SsW-Satz: Zwei Dreiecke, die in zwei Seitenlängen und in jenem Winkel übereinstimmen, der der längeren Seite gegenüberliegt, sind kongruent.
    Hierbei wird die Einschränkung gegenüber einem in Allgemeinheit nicht existierenden im SSW-Satz durch eine entsprechende Kennzeichnung (etwa SsW, Ssw oder SSWg, siehe die Abbildung unten) zum Ausdruck gebracht.

Ferner lässt sich aus dem WSW-Satz und dem Satz über die Winkelsumme im Dreieck folgern, dass zwei Dreiecke auch dann kongruent sind, wenn sie in einer (beliebigen) Seite und zwei (beliebigen) Innenwinkeln übereinstimmen (SWW, WSW und WWS).

Stimmen zwei Dreiecke in den drei Innenwinkeln überein, so sind sie nicht notwendigerweise kongruent. Sie sind jedoch ähnlich.

Die nachfolgende Abbildung zeigt für jeden der vier Kongruenzsätze die Größen, in denen zwei Dreiecke übereinstimmen müssen.

Für die Kongruenzsätze nötige Größen

Beweis

Klassisch beweist man die Kongruenzsätze, indem man Konstruktionen mit Zirkel und Lineal angibt, die aus den entsprechenden gegebenen Größen ein Dreieck konstruieren. Mit Bezeichnungen wie in obiger Abbildung geht dies wie folgt:

  • SSS: Gegeben  ,   und  . Trage eine Strecke   der Länge   ab; der Kreis um   mit Radius   und der um   mit Radius   schneiden sich in zwei Punkten   und  , wodurch sich zwei spiegelsymmetrische (also kongruente) Dreiecke   und   ergeben. Legt man sich auf eine Orientierung fest, ist das Dreieck sogar eindeutig. Dies gilt entsprechend auch für die folgenden Konstruktionen.
  • WSW: Gegeben  ,   und  . Trage eine Strecke   der Länge   ab; die Halbgerade, die bei   mit   den Winkel   einschließt, und die, die bei   mit   den Winkel   einschließt, schneiden sich in einem Punkt  .
  • SWS: Gegeben  ,   und  . Auf zwei Halbgeraden, die mit   als Scheitel den Winkel   einschließen, trage die Länge   bzw.   ab, um   und   zu finden.
  • SsW: Gegeben  ,   und   (wobei  ). Konstruiere zwei Halbgeraden, die mit   als Scheitel den Winkel   einschließen; trage auf einem Schenkel die kürzere Strecke   ab um   zu finden; der Kreis um   mit Radius   schneidet den anderen Schenkel in einem Punkt  .
 
Kongruenzsatz

Das nebenstehende Bild zeigt, dass der Winkel beim SSW-Satz der längeren Seite gegenüber liegen muss. Andernfalls hätte man Dreiecke, die zwar in drei Teilen (SSW) übereinstimmen, aber nicht kongruent sind: Die beiden Dreiecke   und   stimmen in den Seitenlängen   und   sowie im Winkel   überein. Die Seitenlängen   und   unterscheiden sich aber.

Bemerkungen

  • In Hilberts Axiomensystem der euklidischen Geometrie hat SWS den Rang eines Axioms, die anderen werden aus diesem und den übrigen Axiomen bewiesen. Das erkannte Hilbert als nötig, weil im überlieferten Aufbau Euklids Beweisideen verwendet wurden, die nicht aus seinen Axiomen und Postulaten rein logisch abzuleiten waren, sondern sich auf die anschaulich einleuchtende freie Beweglichkeit der Dreiecke beriefen.
  • Es ist unter Umständen auch möglich, ein Dreieck aus anderen drei Bestimmungsstücken zu konstruieren, unter denen beispielsweise Inkreisradius, Umkreisradius, Fläche oder Höhen auftreten. Die zugehörigen Kongruenzaussagen werden jedoch nicht zu den klassischen Kongruenzsätzen gezählt.
  • In der sphärischen Geometrie weicht die Sachlage teilweise ab. So sind dort zwei (sphärische) Dreiecke bereits kongruent und nicht nur ähnlich, wenn sie in den drei Innenwinkeln übereinstimmen. Die Angabe des dritten Winkels ist auch nicht mehr redundant (Sphärischer Exzess).

Kongruenzbeweise

Die vier Kongruenzsätze bilden die Grundlage eines Beweisverfahrens, das in der Elementargeometrie häufig verwendet wird: In einem Kongruenzbeweis begründet man die Gleichheit zweier Streckenlängen oder zweier Winkelgrößen dadurch, dass man zunächst die Kongruenz zweier geeigneter Dreiecke zeigt und anschließend die Gleichheit entsprechender Seitenlängen bzw. Winkel folgert.

Literatur