Stichprobenumfang

Anzahl der Auswahleinheiten in einer Stichprobe
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 20. Oktober 2008 um 17:03 Uhr durch Mps (Diskussion | Beiträge) (Formel für die Mindestgröße einer Stichprobe für relative Häufigkeiten). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Der Stichprobenumfang (oft auch Stichprobengröße genannt) ist die Anzahl der für eine Prüfung benötigten Proben einer Grundgesamtheit, um statistische Kenngrößen mit einer bestimmten Qualität (Repräsentativität) zu ermitteln (Schätzen). Durch eine geeignete Wahl des Stichprobenumfangs sollen systematische Fehler vermieden und statistisch belegbar werden.

Benötigte Stichprobenumfänge bei einfacher Zufallsauswahl

Der Stichprobenumfang wird häufig durch Normen festgelegt, aber auch Erfahrungswerte werden zur Festlegung herangezogen.

Mit den ermittelten Ergebnissen werden statistische Werte berechnet.

Ein Instrument zur Ermittlung von statistischen Werten ist zum Beispiel die Qualitätsregelkarte. Die Standardabweichung und die Prozessfähigkeit sind typische Werte, die bei immer wiederkehrenden Stichproben berechnet werden.

Beim Schätzen werden die Punktschätzung und die Intervallschätzung unterschieden. Während die Punktschätzung für einen gesuchten Parameter einen einzelnen Wert liefert, werden bei der Intervallschätzung auch Informationen über mögliche Abweichungen (Konfidenzintervall) des aus der Probe berechneten Parameters gegenüber dem tatsächlichen Wert der Grundgesamtheit geliefert.

Berechnung der Mindestgröße einer Stichprobe bei gegebenem Konfidenzintervall und gegebenem absoluten Fehler

  •  
mit e: Absoluter Fehler = halbe Länge des Konfidenzintervalls

Formel für die Mindestgröße einer Stichprobe für relative Häufigkeiten

  •  

Um den erforderlichen Stichprobenumfang festlegen zu können sind vorab zu wissen:

*  : Signifikanzniveau, bestimmt das Konfidenzintervall, z. B. bei α = 0,1 für 10 % maximal zulässige Irrtumswahrscheinlichkeit hieße es, dass der kritische Wert bei   also 95 %-Grenze lege. Im Falle einer Normalverteilung zx = z(0,95) = 1,645.
  •  : Genauigkeit der Stichprobenergebnisse (zugelassener Fehler, z. B. 0,01 für 1 %)
  •  : Standardabweichung der Mittelwerte der Stichproben

Formel für die Mindestgröße einer Stichprobe für Anteilswerte

  •  

mit

p: geschätzter wahrer Anteil
z: Konfidenzintervall (z. B. 1,96)
h: Präzision der Schätzung (z. B. 0,01)

Beispiel

In der Werkstoffprüfung ist ein Stichprobenumfang von 10 pro 1000 produzierten Teilen durchaus üblich. Er ist u. a. von der Sicherheitsrelevanz des Bauteils oder des Werkstoffes abhängig. Bei den zerstörenden Prüfungen wie zum Beispiel beim Zugversuch wird versucht, den Prüfaufwand und somit die Stichprobe möglichst klein zu halten. Bei der zerstörungsfreien Prüfung z. B. bei Bildverarbeitungssystemen für die Vollständigkeitsprüfung wird häufig eine 100 %-Kontrolle durchgeführt, um Fehler in der Produktion möglichst schnell zu erkennen.