Ein Dauermagnet (auch: Permanentmagnet) ist ein Stück eines magnetisierbaren Materials, zum Beispiel Eisen, Kobalt oder Nickel, welches sein statisches Magnetfeld behält, ohne dass man (im Gegensatz zu Elektromagneten) einen elektrischen Stromfluss benötigt.
Grundlagen
Ein Dauermagnet kann durch die Einwirkung eines Magnetfeldes auf ein ferromagnetisches Material erzeugt werden. Durch ein abklingendes magnetisches Wechselfeld, Erwärmung über die Curie-Temperatur oder Stoßeinwirkung kann es wieder entmagnetisiert werden. Die im Alltag bekannteste Form sind Ferritmagnete, z. B. als Pinnwand-Haftmagnet oder – mit Eisen-Polschuhen versehen – als Schranktür-Verschluss.
- Ein Permanentmagnet übt auf alle ferromagnetischen Stoffe wie z. B. Eisen eine Anziehung aus.
- Zwei Permanentmagnete ziehen sich je nach ihrer Lage zueinander an oder sie stoßen sich ab.
Die Hysteresekurven von geeigneten Materialien sind entsprechend breit und nähern sich einem Rechteck.
Kenngrößen
Koerzitivfeldstärke HC
Die Feldstärke, die aufgewendet werden muss, um den Magneten vollständig zu entmagnetisieren (Flussdichte B=0). Schnittpunkt der Hysteresekurve mit der Achse der Feldstärke H. Je größer die Koerzitivfeldstärke, desto größer ist die Beständigkeit des Magneten gegen Entmagnetisierung durch äußere Felder.
Remanenz BR
Mit Remanenz bezeichnet man die Flussdichte, die ohne äußeres Feld auftritt. Schnittpunkt der Hysteresekurve mit der Achse der Flussdichte B.
Energiedichte BH
Die Energiedichte, auch Energieprodukt oder BH-Produkt, genannte Größe entspricht der maximal im Magneten gespeicherten magnetischen Energie bezogen auf sein Volumen.
Maximale Betriebstemperatur
Während die Curietemperatur den Punkt des völligen, (in bezug auf die Temperatur meist irreversiblen) Verlustes der Dauermagneteigenschaft angibt, ist für den praktischen Einsatz die maximale Betriebstemperatur, die meist deutlich unterhalb der Curietemperatur liegt, relevant. Bis zu dieser Temperatur können die Dauermagnete ohne nennenswerte irreversible Verluste betrieben werden.
Dauermagnetmaterialien
Stahl
Mit Stählen wurden früher Dauermagnete erzeugt. Sie sind aber sehr schwach und lassen sich sehr leicht entmagnetisieren.
Ferrite
Ferritmagnete sind kostengünstig, aber relativ schwach. Typische Anwendung sind Haftmagnete und einfache kleine Gleichstrommotoren.
Bismanol
Bismut und Mangan bilden ebenfalls ein Permanentmagnetmaterial
Aluminium-Nickel-Cobalt
Aluminium-Nickel-Cobalt (AlNiCo) sind grundsätzlich Eisenlegierungen mit Al, Ni und Co als Hauptlegierungselemente. Diese Materialien sind bis 500 °C einsetzbar, haben aber eine relativ geringe Energiedichte und Koerzitivfeldstärke. Die Remanenz ist höher als bei den Ferritmagneten. Die Herstellung erfolgt durch Gießen oder pulvermetallurgische Verfahren. Sie haben eine gute Korrosionsbeständigkeit, sind aber zerbrechlich und hart.
Samarium-Cobalt
Samarium-Cobalt (SmCo) ermöglicht starke Dauermagnete mit hoher Energiedichte und hoher Einsatztemperatur. Nachteilig ist der hohe Preis.
Neodym-Eisen-Bor
Neodym-Eisen-Bor (NdFeB) ermöglicht sehr starke Magnete zu verhältnismäßig günstigen Kosten. Die Herstellung erfolgt über pulvermetallurgische Verfahren, heute aber vermehrt als kunststoffgebundene Magnete. Lange Zeit waren die Einsatztemperaturen auf 60–120 °C begrenzt. Bei einigen neueren Entwicklungen werden Einsatztemperaturen bis 200 °C angegeben.
Anwendungen
Mechanik
- Lagerungen
- Haftmagnete
- durch Wandungen hindurch wirkende Kupplungen
Elektromechanik
- Elektromotoren, z. B. selbsterregte Gleichstrommotoren, Läufer kleiner Synchronmotoren (Permanentmagnet-Synchronmotor, PMSM), Läufer elektronisch kommutierter Motoren
- Läufer kleinerer Generatoren (z. B. Fahrraddynamo)
- Feldmagnete von Lautsprechern und dynamischen Mikrofonen
- Betätigungsmagnete für Reedkontakte
- Felderzeugung in Drehspulmesswerken
- Dämpfung (Wirbelstrombremse) in Ferraris-Stromzählern
Elektronik
- Feldmagnete für Zirkulatoren in der Höchstfrequenztechnik
- Korrekturmagnete an Bildröhren
- Feldmagnete von Magnetrons
Fachliteratur
- Prof. Dr. Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main, 2000, ISBN 3-8171-1628-4
- Dr. Ing. Hans Fischer: Werkstoffe in der Elektrotechnik. 2. Auflage, Carl Hanser Verlag, München Wien, 1982, ISBN 3-446-13553-7