Betriebsmodus (Radar)

umschaltbare Betriebsarten für spezielle Signalprofile
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 20. Juli 2008 um 21:00 Uhr durch Henning M (Diskussion | Beiträge) (Dogfight). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Der Ausdruck Betriebsmodus definiert bei Radargeräten ein spezielles Signalprofil, welches für eine bestimmte Aufgabe (z. B. Suche nach Luftzielen oder Erfassung von Schiffen auf See) optimiert ist. Die wichtigsten Parameter in diesem Profil sind Sendefrequenz, Impulsleistung, Impulsfolgefrequenz (PRF) und Impulslänge. Besonders luftgestützte Radare verfügen über eine große Zahl von Betriebsmodi, meist über 15 Stück, da sie eine Vielzahl von möglichen Zielen bekämpfen müssen, während spezialisierte Geräte wie Such- oder Feuerleitradare mit deutlich weniger Modi auskommen. Moderne Systeme wechseln in Abhängigkeit von der aktuellen Situation und Aufgabe meist halb- oder vollautomatisch in den optimalen Betriebsmodus, während ältere Radare (wie z. B. das der frühen MiG-29) eine intensive Bedienung durch den Piloten erfordern.

Betriebsmodi

Im folgenden werden einige typische und häufig angewandete Betriebsmodi erläutert.

Anmerkung: Die Bezeichnung vieler Betriebsmodi variert je oft je nach Hersteller, da eine Standardisierung der bezeichnungen fehlt. Außerdem werden oft kleine Änderungen an üblichen Modi mit einer neuen, aber meist ähnlichen Bezeichnung versehen.

Luft-Luft-Modi

Dient der genauen Bestimmung der Zielentfernung und des Winkels zum Ziel, meist genau ein einzelner Impuls. Mittels mehrer hintereinander gesendeter Impulse kann auch die Geschwindigkeit des Zieles ermittelt werden, diese lässt sich aber besser mittels Auswertung des Dopplereffekts ermitteln, weshalb meist nur ältere Radargeräte diesen Modus verwenden.

Track while scan (TWS)

In diesem Modus können mehrere Ziele in einem Antennendurchgang sicher verfolgt werden, während das Radar gleichzeitig nach neuen Zielen sucht. Durch dieses Verfahren wird die Signalverarbeitung stark beansprucht, weshalb viele frühe Radare diesen Modus nicht zur Verfügung stellen konnten. Die ersten TWS-fähigen Radare konnten meist 5 bis 10 Ziele gleichzeitig verfolgen, moderne Systeme auf Basis von Phased-Array-Antennen und leistungsfähigen Computerkomponenten können ca. 20 bis 30 Kontakte simultan verfolgen.

Dieser Modus bestimmt lediglich die Entfernung zum Ziel, bietet allerdings eine sehr hohe Reichweite. Ähnelt dem „Pulse search“-Modus, allerdings befindet sich das Radar ununterbrochen im Suchmodus.

Ebenfalls ein Modus mit großer Reichweite, arbeitet mit einer sehr hohen Impulsfolgefrequenz. Bestimmt allerdings nur Winkel und Geschwindigkeit des Zieles.

Raid assessment

Die Umgebung eines erfassten Zieles wird intensiv mit sehr kurzen Impulsen abgesucht, um eventuell verborgene Ziele innerhalb einer engen Formation zu erfassen.

Single target track (STT)

Das Radar richtet seine gesamte Energie und Rechenkapazität kontinuirlich auf ein Ziel, wodurch sehr genaue Geschwindigkeits-, Winkel- und Entfernungswerte ermittelt werden können. Dies ist zum Beispiel nötig, wenn semi-aktive Lenkwaffen wie die AIM-7 Sparrow eingesetzt werden sollen, die eine dauerhafte Zielbeleuchtung benötigen. Im Luftnahkampf (engl. „dogfight“) wird der Pilot mit einer Zielhilfe unterstützt.

Slaved on external demand

In diesem Modus wird das Radar an das Helmvisier des Piloten gekoppelt, so dass dessen Blickrichtung die Radarantenne ausrichtet. Dies ist insbesondere bei Luftnahkämpfen von Vorteil.

Dogfight

Für den Luftnahkampf gibt es eine Vielzahl von Modi mit ebenfalls vielfältiger Benennung. Diese Modi bieten meist eine Zielhilfe für den Einsatz der Bordkanone und der Kurzstreckenlenkwaffen. Oft wird auch ein schmaler horizontaler und/oder vertikaler Bereich durchsucht, um schnell durchfliegende Ziele zu erkennen und dem Piloten so eine bessere Orientierunng zu verschaffen.

Non cooperative target identification

Dieser Modus dient der Identifizierung von Zielen, die nicht auf eine IFF-Abfrage reagieren und sich außerhalb der Sichtweite des Piloten befinden (engl. „Beyond Visual Range“). Hierzu sind meist nur moderne Radargeräte in der Lage, da dieses Verfahren auf der hochgenauen Analyse des Radarechos beruht, was hohe Anforderungen an die Signalverarbeitung stellt. Das Kernmerkmal bei dieser Analyse ist das Radarecho der Verdichterschaufeln, wobei deren Anzahl, sowie ihre Drehgeschwindigkeit Aufschluss über das verwendete Triebwerk gibt und damit wieder Rückschlüsse auf den Flugzeugtyp erlaubt.

Eine Besonderheit stellt das AN/APG-77 der F-22 Raptor dar. Es verwendet ein extrem hochauflösendes, bildgebendes verfahren, welches ein Ziel anhand der Form seiner Flugzelle identifiziert und ist somit nicht auf eine direkte Sicht auf die Verdichterschaufeln angewiesen. Dieses hochaufwändige Verfahren ist allerdings nur mit neusten AESA-Antennen und sehr großen Rechenkapazitäten zuverlässig einsetzbar.

Low Probability of Intercept (LPI)

Dieser Modus soll die Erfassung der ausgesendeten Radarstrahlen durch feindliche Radarwarnanlagen verhindern oder zumindest verzögern. Hierzu werden alle Paramter der gesendeten Impulse in sehr schneller Folge geändert, damit das feindliche Warngerät kein Muster erkennen kann und somit keinen Alarm gibt. Allerdings sind enorme Rechenkapazitäten notwendig, da es auch für das sendende Radar schwierig ist eigene Impulse von Hintergrundrauschen und anderen natürlichen Störungen zu unterscheiden. Somit ist die Effektivität dieses Modus stark an die Verarbeitungskapazität der Signalverarbeitung gekoppelt. Des weiteren Reduziert dieses Verfahren die Reichweite deutlich, da die Impulsleistung zwangsläufig reduziert werden muss, um die Wahrscheinlichkeit einer Entdeckung zu verringern.


Luft-Boden-Modi

Sea modes

Diese Modi dienen der Erfassung von Seezielen und sind auf die Unterdrückung von See-Cluttern spezialisiert. Hierzu werden sehr kurze Sendeimpulse verwendet.

Ground moving target indication and tracking

Um auch Bodenziele zuverlässig angreifen zu können wertet dieser Modus auch sehr geringe Frequenzverschiebungen (Dopplereffekt) aus, da sich bewegende Fahrzeuge aufgrund iherer geringen Geschwindigkeit nur einen sehr geringen Dopplereffekt hervorrufen. Kernelement ist die MTI-Signalverarbeitung.

Ground mapping

Dieser Modus (welches sich der SAR-Technbik bedient) erstellt eine Bodenkarte des Zielgebietes. Anfänglich waren nur sehr grobe Karten möglich, auf denen nur große Landschaftsmerkmale wie Berge oder Flüsse zu erkennen waren. Heutzutage sind durch das sogenannte „Doppler Beam Sharpening“-Verfahren, welches zusätzlich noch den Dopplereffekt auswertet, und moderne Radarkomponenten Auflösungen von unter einem Meter möglich, wodurch viele Ziele, die durch den MTI-Modus erfasst wurden, anhand ihrer Form identifizierbar sind.

Terrain avoidance

Dieser Modus ist sehr einfach zu implementieren und sucht nach Hindernissen, welche sich auf der Flugbahn des Flugzeuges befinden. Dieser Modus wird vorwiegend bei Tiefflug-Missionen eingesetzt, wobei die Kombination von präzisen digitalen Karten und GPS diesen Betriebsmodus zunehmend ablöst.

Precision velocity update

Ebenfalls ein heutzutage kaum mehr gebrauchter Modus. Er misst sehr genau die Geschwindigkeit über Grund, wodurch es möglich ist die Ungenauigkeit des Inertiale Navigationssystems bis zu einem gewissen Grad auszugleichen. Seit der breiten Einführung von GPS kaum mehr in Gebrauch.

Air-to-surface ranging

Dieser Modus liefert eine sehr genaue Entfernungsmessungen zu festgelegten Orten am Boden. Dies ist unter anderem für einen präzisen Bombenaburf nötig, zum anderen können Ungenauigkeiten im Navigationssystem ausgeglichen werden.