Diskussion:Satz des Euklid

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 21. November 2003 um 12:52 Uhr durch SirJective (Diskussion | Beiträge) (Berechenbarkeit und Existenz). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Wie die Beispiele zeigen, ist (Z+1) doch nicht unbedingt eine Primzahl. Deshalb müsste die Schlussfolgerung aus Euklid's Ansatz wohl heissen: (Z+1) ist entweder eine Primzahl oder durch mindestens eine Primzahl teilbar, die grösser als PN ist. Da BEIDE Alternativen der Annahme widersprechen, ist bewiesen, dass es keine grösste Primzahl gibt. Ich kann allerdings nicht sagen, ob Euklid dies schon so oder ähnlich formuliert hat.

Du hast recht: Z+1 ist nicht notwendig selbst eine Primzahl. Selbst mit der Annahme, dass man mit p1, ..., pn alle Primzahlen hat, folgt nur, dass Z+1 einen Primteiler hat, der nicht einer der p1, ..., pn ist. (Er muss nicht notwendig groesser als pn sein.)
Soweit ich weiss, hat Euklid "nur" gezeigt, dass keine endliche Zahl ausreicht, alle Primzahlen zu zaehlen. Er nimmt dazu n Primzahlen p1, ..., pn, und folgert, dass der Primteiler von Z+1 eine weitere Primzahl ist. Daraus folgt, dass es mehr als n Primzahlen gibt.
Da das nun fuer jede natuerliche Zahl n gilt, gibt es unendlich viele.
Aber auch ich gebe zu, dass mir die Originalversion nicht bekannt ist, sondern nur einige Varianten, die man in der Schule und waehrend des Studiums lernt. Alle diese Varianten stimmen aber im Kern ueberein. --SirJective 12:26, 20. Nov 2003 (CET)

Ich denke schon, dass jeder Primteiler von (Z+1) grösser als pn sein muss (wenn vorhanden), da p1...pn ja per Definition schon alle angenommenen Primzahlen enthält.

Ich denke eher, wenn schon p1, ..., pn ALLE Primzahlen sind, dann hat jeder Primteiler von Z+1 wahlweise überhaupt keine Eigenschaften, oder er hat alle Eigenschaften - weil es ihn nicht gibt (schliesslich stimmt er mit keinem pi überein). (NB: Welche Eigenschaften haben nicht existierende Objekte?) --SirJective 21:40, 20. Nov 2003 (CET)

Lassen wir die Frage, ob alle Teiler von (Z+1) größer als PN sind (1 ist auf jeden Fall kleiner), mal offen und fragen uns, ob die Aussage Euklids, es gibt keine letzte Primzahl, überhaupt innerhalb seines Axiomensystems zulässig ist. Es heißt sein Beweis sei einfach und elementar, aber ich fürchte, daß er keineswegs elementar ist. Wie wir wissen, spielen große Primzahlen in der Kryptologie eine wichtige Rolle. Um solche Verschlüsselungs-Primzahlen zu erhalten, müssen selbst die heute leistungsfähigsten Rechner Tage oder Wochen rechnen. Andererseits kann man beliebig große Primzahllücken konstruieren. Daraus folgt, daß die Folge der Primzahlen recht "dünn" wird, wenn die Zahlen genügend groß sind. Meine Überlegung ist nun folgende: Wenn selbst die leistungsfähigsten Rechner (selbst bei zig-milliardenfach gesteigerter Rechenleistung gegenüber heute) in endlicher Zeit keine neue, größere Primzahl mehr ausrechnen können (z.B. weil das Alter des Universums nicht ausreichen würde, um in dieser Zeit eine noch größere Primzahl auszurechnen), kann man dann überhaupt zulässigerweise davon sprechen, die Folge der Primzahlen reiße nicht ab?

Da es sicherlich eine natuerliche Zahl gibt, bis zu der man in Einerschritten selbst mit dem schnellsten Computer des Universums nicht in der (als endlich angenommenen) Lebenszeit des Universums zaehlen kann, kann man dann ueberhaupt zulaessigerweise davon sprechen, die Folge der natuerlichen Zahlen reisse nicht ab?
(Wenn wir davon ausgehen, dass unser 'Supercomputer' in endlicher Zeit nur endlich viele Einerschritte zaehlen kann, dann wird er in der endlichen Lebensspanne des Universums nur, sagen wir, A Schritte zaehlen koennen. Woher wissen wir dann, dass es noch eine Zahl A+1 gibt?)
Andererseits kann man natuerlich auch Zahlen durch Formeln ausdruecken. Geht man nicht in Einerschritten, sondern multipliziert jedesmal mit 10, erreicht man eine viel groessere Zahl (10A, um genau zu sein), jedoch keine Zahl, die noch groesser ist.
Nebenbei kann man mit den endlich vielen Elementarteilchen im (bekannten) Universum ueberhaupt nur endlich viele Zahlen beschreiben (denn es gibt nur endlich viele Zustaende des Universums selbst). "Gibt" es dann ueberhaupt unendlich viele natuerliche Zahlen?
Ich sage ja, denn die Existenz natuerlicher Zahlen und grosser Primzahlen ist nicht an ihre Berechenbarkeit gebunden. Andere sagen nein, denn es existiert nur, was berechenbar ist.

Das gleiche Problem stellt sich bei den rationalen Zahlen. Wenn man sagt, daß die Zahlengerade der rationalen Zahlen überall dicht ist und trotzdem beliebig viele Irrationalzahlen dazwischen schieben kann, geht man stillschweigend, ohne daß das in Euklids Axiomensystem ausdrücklich gefordert ist, davon aus, daß man über unbegrenzte Zeit und unbegrenzte Rechenkapazität verfügt.

Kein Axiomensystem, welches reelle Zahlen (so wie ich sie kenne) definiert, macht Aussagen ueber Berechenbarkeit. Ebensowenig ist Berechenbarkeit eine Voraussetzung fuer Existenz. Andere Axiomensysteme, die Berechenbarkeit fordern, liefern nicht alle reellen Zahlen, sondern nur 'berechenbare Zahlen'. (Und selbst die sind nicht alle als endlicher Dezimalbruch darstellbar, sondern nur als Turingmaschine.)

Dieses Axiom hat Euklid nicht eingesetzt und es dürfte auch schwer fallen, es überhaupt als selbstverständlich, jedem Vernünftigen einleuchtend hinzustellen.

Jeder hinreichend Vernuenftige wird feststellen, dass an dieser Stelle Meinungen aufeinanderprallen, und Vorstellungen von reellen Zahlen, die nicht kompatibel sind. Daher eruebrigt sich eine Diskussion ueber die "Selbstverstaendlichkeit" der Notwendigkeit der Berechenbarkeit.

Ich vermute, daß diese Überlegung nicht allen Mathematikern gefallen wird, aber ich halte sie trotzdem für legitim und frage mich, ob man diese stillschweigende Annahme voraussetzen darf, ohne sich um eine Begründung für sie zu bemühen.

Die Annahme, Berechenbarkeit sei notwendig fuer die Existenz von Zahlen, hast du gemacht. Es gibt genug Mathematiker, die diese Annahme nicht machen, sich aber bewusst sind, dass nicht alle ihre Objekte berechenbar sind. Trotzdem existieren sie in dem Sinne, dass ihre Existenz keine Widersprueche innerhalb(!) des Axiomensystems hervorruft.

Meines Erachtens ist es durchaus fraglich, ob man aus Euklids Beweis, daß die Folge der Primzahlen nicht abreißt, folgern darf, die Folge der Primzahlen sei unendlich. Denn diese Folgerung setzt stillschweigend voraus, daß man über unbegrenzte Zeit und Rechenkapazität verfügt, obwohl das in den Axiomen Euklids nicht ausdrücklich vorausgesetzt wird bzw. voraussetzbar ist.

Das sehe ich anders. Mit meinem obigen Abschnitt stelle ich dir die Frage, ob die Menge aller natuerlichen Zahlen unendlich ist. Ich denke, eine konsistente Antwort muss lauten: Wenn es notwendig ist, Zahlen berechnen zu koennen damit sie existieren, dann gibt es auch nur endlich viele natuerliche Zahlen. Damit waere klar, dass es nur endlich viele Primzahlen gibt.

Ich würde mich über Zusendungen und Diskussionsbeiträge freuen. Meine Email-Adresse lautet: harald@haraldtrachmann.de (21.11.2003 1045h)

Leider hab ich nicht wirklich Lust, mich auf eine Grundsatzdiskussion einzulassen (hatte ich schon - so intensiv wie vergeblich - in news:de.sci.mathematik, Thema "Widersprueche der Mengenlehre"), daher hoffe ich, dass du dich aus verschiedenen Quellen selbst informierst, welche unterschiedlichen Ansichten es da gibt (Stichworte sind z.B. : mathematischer Konstruktivismus, Unendlichkeitsaxiom). --SirJective 11:52, 21. Nov 2003 (CET)