IPsec

Protokoll-Suite, die gesicherte Kommunikation über potentiell unsichere IP-Netze ermöglichen soll
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 18. November 2007 um 20:23 Uhr durch 84.134.189.111 (Diskussion) (Main Mode). Sie kann sich erheblich von der aktuellen Version unterscheiden.
IPsec im TCP/IP-Protokollstapel
Anwendung HTTPS IMAP
Transport
TCP
Rechnernetz IPsec
Netzzugang Ethernet Token
Ring
FDDI

IPsec (Kurzform für Internet Protocol Security) wurde 1998 entwickelt, um die Schwächen des Internetprotokolls (IP) zu beheben. Es stellt eine Sicherheitsarchitektur für die Kommunikation über IP-Rechnernetze zur Verfügung. IPsec soll die Schutzziele Vertraulichkeit, Authentizität und Integrität gewährleisten; speziell soll es also auch vor sogenannten Replay-Angriffen bzw. einer Replay-Attacke schützen – das heißt, ein Angreifer kann nicht durch Abspielen eines vorher mitprotokollierten Dialogs die Gegenstelle zu einer wiederholten Aktion verleiten.

Der RFC 2401 bildet das Hauptdokument zu IPsec, er beschreibt die Architektur von IPsec. Von dort aus werden die unten genannten RFCs referenziert. Wesentliche Inhalte von IPsec sind die Protokolle Authentication Header (AH) und Encapsulated Security Payload (ESP) sowie Internet Key Exchange (IKE) zum Austausch der Schlüssel.

Im Gegensatz zu anderen Verschlüsselungsprotokollen wie etwa SSL arbeitet IPsec auf der Vermittlungsschicht (Schicht 3) des OSI-Referenzmodells.

Verbindungsaufbau

Schlüsselaustausch

Manual Keying

Die Schlüssel, die für IPsec verwendet werden, werden beim „Manual Keying“ vorab ausgetauscht und auf beiden Tunnelendpunkten fest konfiguriert. Von dieser Methode ist jedoch abzuraten, da manuell erzeugte Schlüssel in der Regel einfach zu erraten sind. Besser ist die Verwendung von ISAKMP, auch als IKE bezeichnet. Bei diesem Protokoll wird der Schlüssel für IPsec automatisch erzeugt (und in regelmäßigen Abständen geändert).

IKEs

Das Internet Key Exchange (IKE) Protokoll dient der automatischen Schlüsselverwaltung für IPsec. Es verwendet den Diffie-Hellman-Schlüsselaustausch für einen sicheren Austausch von Schlüsseln über ein unsicheres Rechnernetz und ist wohl der komplexeste Teil von IPsec. IKE ist in RFC 2409 spezifiziert und basiert auf dem Internet Security Association and Key Management Protocol (ISAKMP, RFC 2408), der IPsec Domain of Interpretation (DOI, RFC 2407), OAKLEY (RFC 2412) und SKEME.

IKE definiert, wie Sicherheitsparameter vereinbart und gemeinsame Schlüssel (shared keys) ausgetauscht werden. Was ausgetauscht wird, ist Aufgabe eines DOI-Dokuments.

Vor dem eigentlichen Start einer verschlüsselten Verbindung mit IPsec müssen sich beide Seiten gegenseitig authentifizieren und sich auf die zu verwendenden Schlüssel Algorithmen einigen. Hierfür ist IKE gedacht. Zur Authentifizierung werden die Verfahren Pre Shared Keying (PSK) und Certificate eingesetzt. IPsec arbeitet mit verschiedenen symmetrischen wie asymmetrischen Schlüsseln.

IKE basiert auf UDP und nutzt standardmäßig den Port 500 als Quell- und Ziel-Port. Wird IKE und IPsec jedoch hinter einer Masquerading-Firewall betrieben, wird von den meisten IPsec-Implementierungen in diesem Fall UDP-Port 4500 verwendet. Um das Problem mit IPsec-Verbindungen hinter Masquerading-Firewalls zu lösen, wurden mehrere Vorschläge eingereicht. Keiner der Vorschläge schaffte jedoch die Standardisierung, weshalb der Betrieb einer IPsec-Verbindung von einem Host hinter einer Firewall sehr unzuverlässig ist. Die beste Lösung ist eine Non-Masquerading-Firewall mit einer angeschlossenen DMZ. In der DMZ steht dann der Endpunkt der IPsec-Verbindung.

IKE arbeitet in zwei Phasen:

  1. Aushandlung einer SA (Security Association) für ISAKMP entweder über den Aggressive Mode (Aggressiver Modus) oder Main Mode (Hauptmodus)
  2. Erzeugung einer SA für IPsec mittels Quick Mode (Schnellmodus)

Eine Security Association (SA) ist eine Vereinbarung zwischen den beiden kommunizierenden Seiten und besteht aus den Punkten:

  1. Identifikation (entweder per PSK oder Zertifikat)
  2. Festlegung des zu verwendenden Schlüsselalgorithmus für die IPsec-Verbindung
  3. von welchem (IP-) Netz die IPsec-Verbindung erfolgt
  4. zu welchem (IP-) Netz die Verbindung bestehen soll
  5. Zeiträume, in denen eine erneute Authentifizierung erforderlich ist
  6. Zeitraum, nach dem der IPsec-Schlüssel erneuert werden muss

Phase 1

Main Mode

Der Main Mode (dem Aggressive Mode vorzuziehen) wird in der ersten Phase der Verschlüsselungsvereinbarung und Authentifizierung (Internet Key Exchange) genutzt. Hierbei handeln der Initiator (derjenige, der die Verbindung aufnehmen will) und der Antwortende (der Responder) miteinander eine ISAKMP-SA aus. Diese „Verhandlung“ geschieht in folgenden Schritten:

  1. Der Initiator sendet einen (zur Not auch mehrere) Vorschläge mit Authentifizierungs- und Verschlüsselungsalgorithmen.
  2. Der Responder wählt aus den angebotenen und den von ihm unterstützten den sichersten Algorithmus aus und sendet dies an den Initiator.
  3. Der Initiator sendet seinen öffentlichen Teil vom Diffie-Hellman-Schlüsselaustausch und einen zufälligen Wert (die Nonce).
  4. Der Responder sendet ebenfalls seinen öffentlichen Teil vom Diffie-Hellman-Schlüsselaustausch und einen zufälligen Wert. Dieser Wert dient im Schritt 5 der Authentifizierung.

Da nun beide (der Responder und der Initiator) die öffentlichen Teile für den Diffie-Hellman-Schlüsselaustausch kennen, wird dieses Verfahren genutzt, um den geheimen Schlüssel zu berechnen. Dieser wird dann für die Verschlüsselung nach dem vereinbarten Schlüsselverfahren für die folgenden Schritte verwendet. Der berechnete (Diffie-Hellman-)Schlüssel wird auch für die Erzeugung eines weiteren Schlüssels genutzt, der für die Authentifikation verwendet wird.

Schritt 5 ist die Authentifizierung. Dabei müssen sich beide Beteiligten als zugriffsberechtigt ausweisen. Hierbei kommen zwei unterschiedliche Verfahren zum Einsatz:

  1. die Authentifizierung mittels vereinbarter Geheimnisse (im englischen Pre-Shared-Keys, PSK) und
  2. zertifikatsbasiert.

Die zertifikatsbasierte Authentifizierung verwendet X.509 Zertifikate und ist im wesentlichen eine Public-Key Infrastructure, wie sie auch für SSL und S/MIME verwendet wird. PGP-Zertifikate sind ein anderer Ansatz und können hierfür nicht verwendet werden.

Die Authentifikationsmethoden unterscheiden sich zwar, jedoch ist die grundsätzliche Vorgehensweise immer die gleiche: Es wird immer ein Hashwert über das mit dem Diffie-Hellman-Schlüsselaustausch erzeugte Geheimnis, die Identität, den ausgehandelten Kryptoverfahren sowie den bisher versandten Nachrichten gebildet (in der Literatur werden manchmal Cookies erwähnt: ein Hashwert über ein erzeugtes Geheimnis, IP-Adresse und Zeitmarke), verschlüsselt und versendet. Der Schlüssel, der hier für die Verschlüsselung genutzt wird, ist jedoch nicht der aus dem Diffie-Hellman-Schlüsselaustausch, sondern ein Hashwert über diesen sowie die versandten Nachrichten (genauer gesagt: die Cookies).

PSK-Authentifizierung

Bei diesem Verfahren erfolgt die Authentifizierung aufgrund eines einzigen gemeinsamen Geheimnisses. Es kann angewendet werden, wenn eine überschaubare Menge von Teilnehmern an das IPsec-VPN angeschlossen ist. Der wesentliche Nachteil ist: Erhält jemand unberechtigten Zugriff auf diesen Schlüssel, müssen auf allen beteiligten Hosts die Schlüssel ausgetauscht werden, um die Sicherheit wiederherzustellen. Soll ein Rechnernetz wachsen, ist dieses Verfahren auch dann abzulehnen, wenn zuerst nur wenige Knoten beteiligt sind. Der Mehraufwand für die zertifikatsbasierte Authentifizierung amortisiert sich in der Regel bereits nach kurzer Zeit.

Zertifikatsbasierte Authentifizierung

Diese Authentifizierung hat einen anderen Ansatz. Dabei werden X.509-Zertifikate verwendet. Dieses System basiert auf vertrauenswürdigen CAs (Certification Authorities, z. B. mit eTrust) oder einer Hierarchie aus diesen. Das Prinzip hierbei ist, dass jeder einzelne Endpunkt seine CAs (Vertrauensstellen) kennt und alle Zertifikate, die von diesen Vertrauensstellen signiert sind, als gültig anerkennt. In der Praxis bedeutet dies, dass alle Zertifikate von vertrauenswürdigen CAs eingespielt werden und somit alle von diesen CAs ausgestellten Zertifikaten Zugriff haben. Zertifikate können von bekannten CAs bezogen werden (VeriSign, eTrust uvm.). Damit kann gewährleistet werden, dass auch unbekannte VPN-Partner authentifiziert werden können. Leider ist dies in der Praxis nicht so leicht, weil weitere Parameter (z. B. Rechnernetzadressen) eine Rolle spielen und diese mit bereits bestehenden VPN-Verbindungen kollidieren können. Es hat sich daher durchgesetzt, eine private PKI einzusetzen. Mit einer eigenen PKI sollen aber nur bekannte und vertrauenswürdige Hosts Zugriff auf das VPN haben.

Die zertifikatsbasierte Authentifizierung erfolgt wie die PSK-Authentifizierung. Der Unterschied ist: Je nach Verbindung kann ein anderes Zertifikat zum Einsatz kommen. Und wer sein CA-Zertifikat nicht veröffentlicht, kann gezielt steuern, wer zugreifen darf.

Ein weiterer Vorteil einer zertifikatsbasierten Authentifizierung: Die CA darf einzelne Zertifikate widerrufen. In der sogenannten CRL (Certificate Revocation List) werden alle Zertifikate, die irgendwie ungültig geworden sind, gesperrt. Bei einer PSK-Authentifizierung ist dagegen der Austausch aller Schlüssel erforderlich.

Aggressive Mode

Im Aggressive Mode werden die obigen Schritte auf drei zusammengefasst. Hierbei fällt dann die Verschlüsselung des obigen fünften Schrittes weg. Stattdessen werden die Hashwerte der PSKs im Klartext übertragen. Die Sicherheit des Verfahrens ist eng mit der Stärke des pre shared keys und des Hashverfahrens gekoppelt. Ein guter Schlüssel ist eine zufällige Wertefolge in der maximalen Schlüssellänge. Da in der Praxis gute Schlüssel oft aus Bequemlichkeit nicht gewählt werden, sollte man diesen Modus mit Vorsicht einsetzen.

Ein Grund für den Einsatz dieses Modus kann jedoch gegeben sein, wenn die Adresse des Initiators dem Responder a priori nicht bekannt ist, und beide Seiten pre-shared Keys zur Authentifizierung einsetzen wollen. Weitere Anwendungsszenarien sind gegeben, wenn ein schnellerer Verbindungsaufbau gewünscht ist und die „policies“ des Responders hinlänglich bekannt sind. Beispiel: Angestellter will aus der die Ferne auf das Firmennetz zugreifen – Richtlinien (z. B. Verschlüsselung mit AES, Hashing mit SHA und Authentifizierung mit RSA Signaturen, die durch die Zertifizierungsstelle der Firma signiert wurden) sind soweit bekannt.

Phase 2

Quick Mode

Der Quick Mode wird in der zweiten Phase von IKE zur Anwendung gebracht (Schutz durch die IKE SA). Die gesamte Kommunikation in dieser Phase erfolgt verschlüsselt. Wie in der ersten Phase wird zunächst ein Vorschlag (Proposal) gemacht. Dieser wird zusammen mit einem Hashwert und dem Nonce übertragen. Später werden die Schlüssel neu berechnet, und es fließen keinerlei Informationen aus den zuvor generierten SAs ein. Dies stellt sicher, dass niemand von den zuvor generierten Schlüsseln auf die neuen schließen kann (PFS). Dies wird erreicht, indem ein zusätzlicher Diffie-Hellman Austausch stattfindet. Die Geheimnisse zur Schlüsselbildung werden verworfen, sobald der Austausch abgeschlossen ist.

Mehrere Quick Modes können zur gleichen Zeit stattfinden und durch die gleiche IKE SA geschützt sein. Um die verschiedenen Wechsel unterscheiden zu können, wird das message ID Feld des ISAKMP-Headers herangezogen. Der Status eines solchen Austausches wird durch die Cookies identifiziert.

Authentication Header (AH)

Der Authentication Header (AH) soll die Authentizität der übertragenen Pakete sicherstellen und den Sender authentifizieren. Weiterhin existiert hier ein Schutz gegen Replay-Angriffe. AH versucht alle möglichen, invarianten Felder eines IP-Datagramms zu schützen. Es werden lediglich Felder ausgeschlossen, die sich auf dem Weg eines IP-Pakets durch ein IP-Netz durch die Router verändern können. AH basiert direkt auf IP und verwendet die IP-Protokoll Nummer 51.

Ein AH-Paket sieht folgendermaßen aus:

Byte 0 Byte 1 Byte 2 Byte 3
Bit 0 1 2 3 4 5 6 7 Bit 0 1 2 3 4 5 6 7 Bit 0 1 2 3 4 5 6 7 Bit 0 1 2 3 4 5 6 7
Nächster Header Nutzdaten-Länge reserviert
Security Parameters Index (SPI)
Feld mit Sequenznummern

Authentizitätsdaten (variabel)

Bedeutung der Felder:

Nächster Header (next header)
identifiziert das Protokoll der im Paket übertragenen Daten
Nutzdaten Länge (payload length)
Größe des AH-Paketes
reserviert (RESERVED)
reserviert für zukünftige Nutzung
Security Parameters Index (SPI)
identifiziert in Verbindung mit der IP-Adresse und dem Sicherheitsprotokoll die Sicherheitsassoziation
Feld mit Sequenznummern (sequence number)
ansteigende Nummer, die vom Absender gesetzt wird, soll Schutz vor Replay-Angriff bieten
Authentizitätsdaten (authentication data)
enthält den Wert des Integritätstests (integrity check value, ICV) welcher sich aus einem Hash des übrigen Paketes ergibt

Encapsulating Security Payload (ESP)

Encapsulating Security Payload (ESP) soll die Authentifizierung, Integrität und Vertraulichkeit von IP-Paketen sicherstellen. Im Unterschied zum AH wird der Kopf des IP-Paketes vom ICV (Integrity check value) nicht berücksichtigt. Jedoch werden die Nutzdaten verschlüsselt übertragen. ESP basiert direkt auf IP und verwendet die IP-Protokoll Nummer 50.

Ein ESP-Paket sieht folgendermaßen aus:

Byte 0 Byte 1 Byte 2 Byte 3
Bit 0 1 2 3 4 5 6 7 Bit 0 1 2 3 4 5 6 7 Bit 0 1 2 3 4 5 6 7 Bit 0 1 2 3 4 5 6 7
Security Parameters Index (SPI)
Sequenznummer

Nutzdaten * (variabel)

  Füllung (0–255 bytes)
    Länge Füllung Nächster Header

Authentizitätsdaten (variabel)

Bedeutung der Felder:

Security Parameters Index (SPI)
identifiziert in Verbindung mit der IP-Adresse und dem Sicherheitsprotokoll die Sicherheitsassoziation
Sequenznummern (sequence number)
ansteigende Nummer, die vom Absender gesetzt wird, soll Schutz vor Replay-Angriff bieten
Nutzdaten (payload data)
enthält die Datenpakete
Füllung (padding)
wird für eingesetzte Blockchiffre genutzt, um Daten bis zur vollen Größe des Blocks aufzufüllen
Länge Füllung (pad length)
enthält Anzahl der eingefügten Bits für Padding
Nächster Header (next header)
identifiziert das Protokoll der im Paket übertragenen Daten
Authentizitätsdaten (authentication data)
enthält den Wert des Integritätstests (integrity check value, ICV)

IPsec im Transportmodus

 
IPsec AH-Header im Transport- und Tunnelmodus
 
IPsec ESP-Header im Transport- und Tunnelmodus

Im Transportmodus wird der IPsec-Header zwischen dem IP-Header und den Nutzdaten eingefügt. Der IP-Header bleibt unverändert und dient weiterhin zum Routing des Pakets vom Sender zum Empfänger. Der Transportmodus wird verwendet, wenn die „kryptographischen Endpunkte“ auch die „Kommunikations-Endpunkte“ sind. Nach dem Empfang des IPsec-Paketes werden die ursprünglichen Nutzdaten (TCP/UDP-Pakete) ausgepackt und an die höherliegende Schicht weitergegeben. Der Transportmodus wird vor allem für Host-zu-Host- oder Host-zu-Router-Verbindungen verwendet, z. B. zu Netz-Management-Zwecken.

IPsec im Tunnelmodus

Im Tunnelmodus wird das ursprüngliche Paket gekapselt und die Sicherheitsdienste von IPsec auf das komplette Paket angewandt. Der neue (äußere) IP-Header dient dazu, die Tunnelenden (also die kryptografischen Endpunkte) zu adressieren, während die Adressen der eigentlichen Kommunikationsendpunkte im inneren IP-Header stehen. Der ursprüngliche (innere) IP-Header stellt für Router usw. auf dem Weg zwischen den Tunnelenden nur Nutzlast (Payload) dar und wird erst wieder verwendet, wenn das empfangende Security-Gateway (das Tunnelende auf der Empfangsseite) die IP-Kapselung entfernt hat und das Paket dem eigentlichen Empfänger zustellt.

Im Tunnelmodus sind Gateway-zu-Gateway- oder auch Peer-zu-Gateway-Verbindungen möglich. Da an jeweils einer Seite Tunnelende und Kommunikationsendpunkt in einem Rechner zusammenfallen können, sind auch im Tunnelmodus Peer-zu-Peer-Verbindungen möglich. Ein Vorteil des Tunnelmodus ist, dass bei der Gateway-zu-Gateway-Verbindung nur in die Gateways (Tunnelenden) IPsec implementiert und konfiguriert werden muss. Angreifer können dadurch nur die Tunnelendpunkte des IPsec-Tunnels feststellen, nicht aber den gesamten Weg der Verbindung.

Keepalives

ISAKMP-Keepalive (DPD)

DPD ist seit Februar 2004 als RFC verabschiedet und bei CheckPoint bis heute (Stand 05/2007) nicht implementiert, obwohl es eines der sinnvollsten Features ist. Nur durch den Einsatz von DPD kann erkannt werden, ob eine IPsec-Verbindung (insbesondere der ISAKMP-Tunnel) unbeabsichtigt und unvorhergesehen abgebrochen wurde. Dann würden beide Gegenstellen die SA’s (Security Associations) abbauen und einen neuen Aufbau des ISAKMP-Tunnels und der ESP-/AH-Tunnel möglich machen. Ohne den Einsatz von DPD würde das Device mit noch bestehenden Tunneln den Neuaufbau abwehren, da die SPIs (Security Payload Identifier) nicht mehr passen. Ein Neuaufbau der Tunnel wäre erst nach Ablauf der Re-Keying-Timer möglich.

DPD wird als Notify-Message im ISAKMP-Protokoll (UDP:500) übertragen (Message-Values: R-U-THERE – 36136/R-U-THERE-ACK – 36137). Die DPD-Funktion dagegen gewährleistet eine kontinuierliche Überprüfung der Verbindung zur Gegenstelle und leistet einen automatischen Wiederaufbau bei ungewolltem Verbindungsabbruch. Die Spezifikation ist festgelegt im RFC 3706 und wird auch ISAKMP-Keepalive genannt.

UDP-Keepalive

Es verhindert den (bei NAT-Traversal) von NAT üblicherweise automatisch eingeleiteten Time-out bei längeren Zeitverzögerungen in der Dateneingabe. Die Spezifikation ist im RFC 3519 festgelegt und wird auch NAT-Keepalive genannt. CheckPoint unterstützt lediglich UDP Keepalive. CheckPoint nutzt hierfür den Port UDP:18233.

Kritik an IPsec

IPsec was a great disappointment to us. Given the quality of the people that worked on it and the time that was spent on it, we expected a much better result. (Bruce Schneier)
(Deutsch: IPsec war eine große Enttäuschung für uns. In Anbetracht der Qualifikation der Leute, die daran gearbeitet haben, und der Zeit, die dafür aufgebracht wurde, haben wir ein viel besseres Ergebnis erwartet)

Die Experten für Kryptographie Bruce Schneier und Niels Ferguson evaluierten mehrfach das IPsec-Protokoll und fanden mehrere Kritikpunkte. Neben der Art, wie es entstand, wird vor allem die hohe Komplexität und damit Fehleranfälligkeit kritisiert. Allerdings stellen beide auch fest, dass IPsec das ursprüngliche IP zur Zeit am besten absichert.

Relevante RFC

IPsec entstand im Zuge der Entwicklung von IPv6 und ist in verschiedenen RFCs spezifiziert:

RFC 2367
PF_KEY Interface
RFC 2401 (abgelöst durch RFC 4301)
Security Architecture for the Internet Protocol
RFC 2402 (abgelöst durch RFC 4302 und RFC 4305)
Authentication Header
RFC 2403
The Use of HMAC-MD5-96 within ESP and AH
RFC 2404
The Use of HMAC-SHA-1-96 within ESP and AH
RFC 2405
The ESP DES-CBC Cipher Algorithm With Explicit IV
RFC 2406 (abgelöst durch RFC 4303 und RFC 4305)
Encapsulating Security Payload
RFC 2407 (abgelöst durch RFC 4306)
IPsec Domain of Interpretation for ISAKMP (IPsec DoI)
RFC 2408 (abgelöst durch RFC 4306)
Internet Security Association and Key Management Protocol (ISAKMP)
RFC 2409 (abgelöst durch RFC 4306)
Internet Key Exchange (IKE)
RFC 2410
The NULL Encryption Algorithm and Its Use With IPsec
RFC 2411
IP Security Document Roadmap
RFC 2412
The OAKLEY Key Determination Protocol
RFC 2451
The ESP CBC-Mode Cipher Algorithms
RFC 2857
The Use of HMAC-RIPEMD-160-96 within ESP and AH
RFC 3526
More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)
RFC 3706
A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers
RFC 3715
IPsec-Network Address Translation (NAT) Compatibility Requirements
RFC 3947
Negotiation of NAT-Traversal in the IKE
RFC 3948
UDP Encapsulation of IPsec ESP Packets
RFC 4106
The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)
RFC 4301 (löst RFC 2401 ab)
Security Architecture for the Internet Protocol
RFC 4302 (löst RFC 2402 ab)
IP Authentication Header
RFC 4303 (löst RFC 2406 ab)
IP Encapsulating Security Payload (ESP)
RFC 4304
Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet Security Association and Key Management Protocol (ISAKMP)
RFC 4305 (abgelöst durch RFC 4835)
Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)
RFC 4306 (löst RFC 2407, RFC 2408, and RFC 2409 ab)
Internet Key Exchange (IKEv2) Protocol
RFC 4307
Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)
RFC 4308
Cryptographic Suites for IPsec
RFC 4309
Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security Payload (ESP)
RFC 4478
Repeated Authentication in Internet Key Exchange (IKEv2) Protocol
RFC 4543
The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH
RFC 4555
IKEv2 Mobility and Multihoming Protocol (MOBIKE)
RFC 4621
Design of the IKEv2 Mobility and Multihoming (MOBIKE) Protocol
RFC 4718
IKEv2 Clarifications and Implementation Guidelines
RFC 4806
Online Certificate Status Protocol (OCSP) Extensions to IKEv2
RFC 4809
Requirements for an IPsec Certificate Management Profile
RFC 4835 (löst RFC 4305 ab)
Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)
RFC 4945
The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX

Literatur

  • Naganand Doraswamy, Dan Harkins: IPSec – The New Security Standard for the Internet, Intranets, and Virtual Private Networks. Second Edition Auflage. Prentice Hall, 2003, ISBN 0-13-046189-X.