Formeln für die Arbeit am 14.12.2004
Bragg-Bedingung
2
d
⋅
sin
ϕ
=
λ
,
2
λ
,
3
λ
,
.
.
.
d
=
A
b
s
t
a
n
d
z
w
.
d
e
n
G
i
t
t
e
r
e
b
e
n
e
n
{\displaystyle \mathrm {2} d\cdot \sin \phi \mathrm {\ =\ } \lambda {,}\ \mathrm {2} \lambda {,}\ \mathrm {3} \lambda {,}\ \mathrm {...} \qquad d\ \mathrm {=} \ \mathrm {Abstand\ zw.\ den\ Gitterebenen} }
Foto-Effekt
W
p
h
o
t
=
h
⋅
f
[
J
=
h
⋅
H
z
=
J
⋅
s
e
c
⋅
1
s
e
c
]
E
n
e
r
g
i
e
=
P
l
a
n
k
′
s
c
h
e
K
o
n
s
t
.
⋅
F
r
e
q
u
e
n
z
{\displaystyle W_{phot}\ \mathrm {=} \ h\;\cdot \;f\qquad \left[J=h\cdot Hz=J\cdot sec\cdot {1 \over sec}\right]\qquad \mathrm {Energie=\ Plank'sche\,Konst.\ \cdot \ Frequenz} }
Röntgen-Spektrum
W
e
−
=
W
p
h
o
t
=
e
⋅
U
=
h
⋅
f
m
a
x
[
c
o
u
l
⋅
V
=
h
⋅
H
z
=
J
]
L
a
d
u
n
g
⋅
S
p
a
n
n
u
n
g
=
h
⋅
F
r
e
q
.
{\displaystyle W_{e^{-}}\ \mathrm {=} \ W_{phot}\ \mathrm {=} \ e\;\cdot \;U\ \mathrm {=} \ h\;\cdot \;f_{max}\qquad \left[coul\cdot V=h\cdot Hz=J\right]\qquad Ladung\;\cdot \;Spannung\ =\ h\;\cdot \;Freq.}
Energieniveaus und Spektrallinien
Energie in der n-ten Bahn
W
n
=
−
m
e
⋅
e
4
8
ϵ
0
2
⋅
h
2
⋅
1
n
2
m
e
=
E
l
e
k
t
r
o
n
e
n
m
a
s
s
e
;
e
=
E
l
e
m
e
n
t
a
r
l
a
d
u
n
g
;
ϵ
0
,
h
=
c
o
n
s
t
.
;
n
∈
N
{\displaystyle W_{n}\ =\ -{m_{e}\cdot e^{4} \over \mathrm {8} \,\epsilon _{0}^{\;2}\,\cdot h^{2}}\cdot {\mathrm {1} \over n^{2}}\qquad m_{e}\mathrm {=Elektronenmasse} ;\;e\mathrm {=Elementarladung} ;\;\epsilon _{0}{,}h\mathrm {=const.} ;\;n\in \mathbb {N} }
Sprung von der m-ten Bahn in die n-te Bahn
f
=
W
m
−
W
n
h
=
f
R
⋅
(
1
n
2
−
1
m
2
)
n
,
m
∈
N
{\displaystyle f\mathrm {=} {W_{m}\mathrm {-} W_{n} \over h}\mathrm {=} f_{R}\cdot \left({\mathrm {1} \over n^{2}}\mathrm {-} {\mathrm {1} \over m^{2}}\right)\qquad n,m\in \mathbb {N} }
Rydbergfrequenz (fR )
f
R
=
m
e
⋅
e
4
8
ϵ
0
2
⋅
h
3
=
3
,
29
⋅
10
15
H
z
m
e
=
E
l
e
k
t
r
o
n
e
n
m
a
s
s
e
;
e
=
E
l
e
m
e
n
t
a
r
l
a
d
u
n
g
;
ϵ
0
,
h
=
c
o
n
s
t
.
{\displaystyle f_{R}\mathrm {=} {m_{e}\cdot e^{4} \over \mathrm {8} \,\epsilon _{0}^{\;2}\,\cdot h^{3}}\mathrm {=3{,}29\cdot 10^{15}Hz} \qquad m_{e}\mathrm {=Elektronenmasse} ;\;e\mathrm {=Elementarladung} ;\;\epsilon _{0}{,}h\mathrm {=const.} }
Sprung von n-ter auf die K-Linie (unterste)
f
K
=
(
Z
−
1
)
2
⋅
f
R
⋅
(
1
1
2
−
1
n
2
)
Z
=
O
r
d
n
u
n
g
s
z
a
h
l
;
n
>
1
;
n
∈
N
{\displaystyle f_{K}\;\mathrm {=} \;(Z\mathrm {-1} )^{2}\cdot f_{R}\cdot \left({\mathrm {1} \over \mathrm {1^{2}} }\mathrm {-} {\mathrm {1} \over n^{2}}\right)\qquad Z\mathrm {=Ordnungszahl} ;\;n\mathrm {>1} ;\;n\in \mathbb {N} }