Diskussion:Allgemeine Relativitätstheorie
Archivierte Diskussionen:
- Diskussion:Allgemeine Relativitätstheorie/Archiv1 (bis 29.12.2005)
- Diskussion:Allgemeine Relativitätstheorie/Archiv2 (bis 18.01.2007)
- Diskussion:Allgemeine Relativitätstheorie/Archiv3 (bis 09.03.2007)
ART und Energie
Unter "Physikalische Wirkungen" fehlt mir der Hinweis, dass das Gravitationsfeld der ART mit jeder Art von Energie wechselwirkt - also auch mit kinetischer Energie, der Bindungsenergie in Atomen u.s.w. Das ist insofern wichtig, weil gerade diese Effekte bereits experimentell bestätigt sind. Siehe Carlip, S. (1997), Kinetic Energy and the Equivalence Principle, Am.J.Phys. 65, 409-413. Dort finden sich auch genaue Angaben für Experimente im Zusammenhang mit Bindungsenergie und etwas auführlicher mit kinetischer Energie. --D.hainz 10:25, 12. Apr. 2007 (CEST)
- Naja, im Artikel steht "Energie und Impuls der Materie beeinflussen die Geometrie der Raumzeit." Das kann man sicher noch etwas deutlicher ausformulieren (inbesondere das unglücklich Wort "Materie" ist erläuterbar). Fühle dich eingeladen, es reinzuschreiben. -- Stringtheorie 12:00, 7. Jun. 2007 (CEST)
Toter Weblink
Bei mehreren automatisierten Botläufen wurde der folgende Weblink als nicht verfügbar erkannt. Bitte überprüfe, ob der Link tatsächlich unerreichbar ist, und korrigiere oder entferne ihn in diesem Fall!
- http://math.ucr.edu/home/baez/RelWWW/grad.html
- In Allgemeine Relativitätstheorie on 2007-05-31 12:55:57, Socket Error: (10060, 'Operation timed out')
- In Allgemeine Relativitätstheorie on 2007-06-11 17:03:29, 404 Not Found
Toter Weblink
Bei mehreren automatisierten Botläufen wurde der folgende Weblink als nicht verfügbar erkannt. Bitte überprüfe, ob der Link tatsächlich unerreichbar ist, und korrigiere oder entferne ihn in diesem Fall!
- http://www.knaw.nl/cfdata/digital_library/output/proceedings/search/detail.cfm?pubid=2146&view=image&startrow=1
- In Allgemeine Relativitätstheorie on 2007-05-31 12:56:02, 404 Not Found
- In Allgemeine Relativitätstheorie on 2007-06-11 17:03:29, 404 Not Found
--KuhloBot 19:05, 11. Jun. 2007 (CEST)
Korrespondenzprinzip
Unter Korrespondenzprinzip gehört meiner Meinung nach nur der Bezug zur newtonschen Gravitationstheorie, da der bezug zur speziellen relativitätstheorie über das Äquvalenzprinzip hergestellt wird. Gruß Stefanwege 23:18, 25. Jun. 2007 (CEST)
- Belege, dass auch ART -> SRT als Korrespondenzprinzip bezeichnet wird:
- Ja, es tut mir leid, dass das alles keine offline-Literatur ist. Bestehst du auf offline-Literatur? Dann kann es etwas dauern, weil alle Bücher über ART, die ich bisher in der Hand hatte, den Begriff "Korrespondenzprinzip" nicht im Index führen.
- Allgemein: Würdest du (wie Pjacobi) das Korrespondenzprinzip vom Anfang weg in den "Verhältnis zu anderen Theorien"-Teil schieben wollen? Das geht ja auch gut. (Obwohl ich finde, dass es sehr gut geeignet ist, um zu erklären, wieso die ART "notwendig" ist.) -- Stringtheorie 15:31, 26. Jun. 2007 (CEST)
- Bem: Die letzten links führen bei mir alle zur selben seite Nach hinten verschieben ist eine Variante. Der alte Abschnitt war nicht besonders gut weil er gleichzeitig das Korrespondenzprinzip und die Motivation für die ART darstellen wollte. Einen Abschnitt über die Motivation für die ART zu schreiben, wäre schön aber es ist auch nicht ganz einfach. Soweit ich es verstanden habe, galt es eine Theorie zu entwickeln in der dass Äquivalenzprinzip auch für die Gravitationsbindungsenergie erfüllt ist. Gruß Stefanwege 18:01, 26. Jun. 2007 (CEST)
- Hust hust... und ich wunderte mich schon, dass die urls alle gleich lange waren. Da hat mich wohl das Copy&Paste reingelegt. Hier sind sie, der Vollständigkeit halber (obgleich das Kapitel ja nun zerstreut ist. Aber falls Versatzstücke davon in den Geschichtsteil eingehen...):
- MfG -- Stringtheorie 18:28, 26. Jun. 2007 (CEST)
Gravitative Zeitdilatation und Rotverschiebung
Ich habe
"Die gravitative Zeitdilatation ist streng genommen kein reiner Effekt der ART, sondern folgt bereits aus der speziellen Relativitätstheorie und dem Äquivalenzprinzip der ART."
durch
"Die gravitative Zeitdilatation ist ein Effekt der ART. Sie folgt bereits aus der speziellen Relativitätstheorie und dem Äquivalenzprinzip der ART."
ersetzt. Da die obige Formulierung falsch ist. So gilt z.B. für die direckt aus der Zeitdilatation folgende grav. Rotverschiebung laut wisner, thorne, wheeler : gravitation seite 187 :"gravitational redshift implies spacetime is curved" Das selbe gilt auch für die grav. Zeitdilatation. Gruß Stefanwege 23:18, 25. Jun. 2007 (CEST)
- Einstein hat das schon 1907 richtig vorhergesagt, als er noch nicht mit Raumzeitkrümmung gearbeitet hat. Es ist klar, dass die Effekte, da sie auf dem Äquivalenzprinzip aufbauen, die Raumzeitkrümmung implizieren, da diese notwendig aus dem ÄP folgt. Ich mache mal eine Formulierung, die sich auf die Kernaussage beschränkt, nämlich, dass Einstein das Zeug schon 1907 nur mit SRT und ÄP hergeleitet hat. Alles andere ist eh Wortklauberei. -- Stringtheorie 10:40, 26. Jun. 2007 (CEST)
- "Ich mache mal eine Formulierung,.." -Kannst du machen. Meiner Meinung nach wäre es aber besser nicht den ganzen Artikel mit historischem Kram vollzustopfen, sondern dass alles in den Abschnitt Geschichte zu packen. Dort fehlen sowieso noch die ersten Schritte (Entwicklung des Äquivalenzprinzips). Gruß Stefanwege 12:34, 26. Jun. 2007 (CEST)
- Meinst du die Entwicklung des ÄP von Galilei über Newton bis Einstein? Quasi eine Kompilation der Geschichtsfetzen von Äquivalenzprinzip (Physik)? -- Stringtheorie 15:32, 26. Jun. 2007 (CEST)
- Habe mal einen Versuch gestartet. Gruß Stefanwege 19:04, 26. Jun. 2007 (CEST)
- Meinst du die Entwicklung des ÄP von Galilei über Newton bis Einstein? Quasi eine Kompilation der Geschichtsfetzen von Äquivalenzprinzip (Physik)? -- Stringtheorie 15:32, 26. Jun. 2007 (CEST)
- "Ich mache mal eine Formulierung,.." -Kannst du machen. Meiner Meinung nach wäre es aber besser nicht den ganzen Artikel mit historischem Kram vollzustopfen, sondern dass alles in den Abschnitt Geschichte zu packen. Dort fehlen sowieso noch die ersten Schritte (Entwicklung des Äquivalenzprinzips). Gruß Stefanwege 12:34, 26. Jun. 2007 (CEST)
flacher raum
Ich habe den Text
"Tatsächlich deutet die Experimentlage (2007) darauf hin, dass der Raum flach ist. An der Raumzeitkrümmung wäre demnach immer die Zeit beteiligt."
entfernt, da er letzlich unsinn ist. Der metrische Tensor besteht aus 10 unabhängigen Größen. Die Einsteinschen Gleichungen legen 6 dieser Größen fest. Die ander 4 sind frei wählbar (welche kann man sich aussuchen) Der metrische tensor hat außerdem 6 reine Raumkomponeten. Auch wenn man also 4 Stück frei wählen kann, kann man im allgemeinen nicht alle Raumkomponeten so festlegen, dass der Raum flach ist. Aber egal: Damit der Satz wieder reinkommt Bedarf es eines Einzelnachweises. gruß Stefanwege 23:53, 25. Jun. 2007 (CEST)
- Richtig sollte es heißen: "Tatsächlich deutet die Experimentlage (2007) darauf hin, dass der Raum auf großen Skalen flach ist." Das folgt daraus, dass der Parameter k in der Robertson-Walker-Metrik innerhalb der Fehlergrenzen =0 ist. Wenn du willst kann ich dir dafür mühsam was raussuchen, aber das steht im Prinzip auch in jedem Astronomie-Lehrbuch. Der Punkt ist, dass in den Friedmann-Gleichungen nur ein Krümmungsparameter steht. Soll ich dir was raussuchen? -- Stringtheorie 10:45, 26. Jun. 2007 (CEST)
- Korrektur: Flachheit innerhalb der Fehlergrenzen gilt nur für erweiterte Modelle. Siehe en:Lambda-CDM_model#Extended models. Insofern sieht es nach standardmodell doch eher nach Satteluniversum aus, auch wenn die Fehler durchaus noch ein flaches Universum innerhalb von 2-3 Sigma-Umgebungen hergeben. Fazit: Satz kann draußen bleiben, weil nicht wirklich bestätigbar. -- Stringtheorie 11:08, 26. Jun. 2007 (CEST)
Fließbach
Deine Interpretation des Fließbach ist falsch. Was er sagt, ist dass das Unterscheidungsmerkmal zwischen ART und Brans-Dicke mit 99,9% für die ART spricht. Die 10-5-genaue Bestätigung der Lichtablenkung/Shapiro-Verzögerung ist durchaus eine Bestätigung der Feldgleichung gegenüber der newtonschen Mechanik, nur unterscheidet das die ART nicht fundamental von Brans-Dicke. Ich würde gern davon absehen, diese konkreten Zahlen so zu nennen, da es den falschen Eindruck erzeugt, die ART sei nicht gut bestätigt. Wie wäre es stattdessen zu sagen, dass die Vorhergesagten Effekte mit Genauigkeiten bis zu 10-5 bestätigt sind? -- Stringtheorie 10:52, 26. Jun. 2007 (CEST)
- Ich hab nun nochmal nachgeschaut, also im Fließbach steht, dass anhand verschiedener Experimente(Lichtablenkung, Mondbahn, Periheldrehung, Rodarechoverzögerung) der Unterschied (Parameter gamm und beta) zwischen Newtonscher Grav. und der ART für schwache Felder mit einer Genauigkeit von bis zu 10-3 festgestellt werden kann. Siehst Du das genauso? Gruß Stefanwege 18:07, 26. Jun. 2007 (CEST)
- Der Fließbach ist wohl von vor 2003, in dem Artikel ist nämlich ein Test der Shapiro-Verzögerung mit Genauigkeit im Bereich 10-5 angeführt. Eine Genauigkeit von 10-3 gibt der Fließbach auch für die Gravitationswirkung der Energie (oder sowas, habs grad nciht zu 100% im Kopf) an. Das ist die experimentelle Beschränkung auf Brans-Dicke. -- Stringtheorie 18:17, 26. Jun. 2007 (CEST)
- Ja der Fließbach ist von 98. Wenn der von dir zitierte Artikel es hergibt, dann schreiben wir 10-5, Das das ÄP aber noch viel genauer gemessen werden konnte sollte man schon erwähnen. Sehe grade ein Problem: In der Lichtablenkung kommt nur gamma vor. Also kann auch nur dass genau bestimmt werden. Für beta gilt dann weiter eine Genauigkeit von 10-3 Gruß Stefanwege 18:46, 26. Jun. 2007 (CEST)
- Ich habe da so eine Idee: Wie wärs, den Absatz über experimentelle Tests des Äquivalenzprinzips rauszuwerfen und nur die Genauigkeit des aktuell besten Tests am Anfang des "physikalische Effekte"-Kapitels zu nennen? Die Details der Experimente sind doch eher was für den Artikel Äquivalenzprinzip (Physik) und ich finde, sie sind beim Lesen ziemlicher Ballast. Hmm? -- Stringtheorie 09:13, 28. Jun. 2007 (CEST)
- Sehe ich genauso. Ich habe schon mal die Infos nach Äquivalenzprinzip (Physik) übertragen. Lediglich "(TEPEE/GREAT: General Relativity Accuracy Test) " habe ich nicht mitrübergenommen, da ich nirgens finden konnte was das genau ist. Gruß Stefanwege 14:17, 28. Jun. 2007 (CEST)
- Google hat 15.000 Hits dazu insofern wirds wohl tatsächlich geplant sein. Bei nem Musikalbum würde man allerdings "Glaskugel!" schreien. ;) -- Stringtheorie 20:05, 28. Jun. 2007 (CEST)
- Sehe ich genauso. Ich habe schon mal die Infos nach Äquivalenzprinzip (Physik) übertragen. Lediglich "(TEPEE/GREAT: General Relativity Accuracy Test) " habe ich nicht mitrübergenommen, da ich nirgens finden konnte was das genau ist. Gruß Stefanwege 14:17, 28. Jun. 2007 (CEST)
- Ich habe da so eine Idee: Wie wärs, den Absatz über experimentelle Tests des Äquivalenzprinzips rauszuwerfen und nur die Genauigkeit des aktuell besten Tests am Anfang des "physikalische Effekte"-Kapitels zu nennen? Die Details der Experimente sind doch eher was für den Artikel Äquivalenzprinzip (Physik) und ich finde, sie sind beim Lesen ziemlicher Ballast. Hmm? -- Stringtheorie 09:13, 28. Jun. 2007 (CEST)
- Ja der Fließbach ist von 98. Wenn der von dir zitierte Artikel es hergibt, dann schreiben wir 10-5, Das das ÄP aber noch viel genauer gemessen werden konnte sollte man schon erwähnen. Sehe grade ein Problem: In der Lichtablenkung kommt nur gamma vor. Also kann auch nur dass genau bestimmt werden. Für beta gilt dann weiter eine Genauigkeit von 10-3 Gruß Stefanwege 18:46, 26. Jun. 2007 (CEST)
- Der Fließbach ist wohl von vor 2003, in dem Artikel ist nämlich ein Test der Shapiro-Verzögerung mit Genauigkeit im Bereich 10-5 angeführt. Eine Genauigkeit von 10-3 gibt der Fließbach auch für die Gravitationswirkung der Energie (oder sowas, habs grad nciht zu 100% im Kopf) an. Das ist die experimentelle Beschränkung auf Brans-Dicke. -- Stringtheorie 18:17, 26. Jun. 2007 (CEST)
Feldgleichungen
Ich habe mal den Absatz
- Die Feldgleichungen beinhalten keine Information über die Bewegung von Teilchen in der gekrümmten Raumzeit. Sie geben lediglich an, wie der Materie- und Energieinhalt sich auf die Krümmung der Raumzeit auswirkt. Die andere Richtung der Wechselwirkung, also die Auswirkung der Raumzeitkrümmung auf die Dynamik der Teilchen, wird durch die Bewegungsgleichungen beschrieben.
aus dem Artikel entfernt Und durch den Absatz
- Die Feldgleichungen dienen zur Berechnung der Krümmungseigenschaften der Raumzeit. Die Bewegung von Teilchen in dieser gekrümmten wird mittels der Bewegungsgleichungen ermittelt. Diese lassen sich aus den Feldgleichungen bestimmen, da die Feldgleichungen die zeitliche Entwicklung, der von einem Teilchen verursachten Raumzeitkrümmung bereits eindeutig festlegt.
ersetzt. Da erster falsch ist, wie man auch in "Charles Misner; Kip S. Thorne, John. A. Wheeler: Gravitation Kapitel 20.6 equations of motion derived from field equation" nachlesen kann. Gruß Stefanwege 18:41, 27. Jun. 2007 (CEST)
- Ich halte diese (in der Literatur häufig anzutreffende) Behauptung für grenzwertig. Hier wird das Thema recht differenziert bearbeitet und erklärt, dass die Formulierung der Feldgleichung die lokale Divergenz des Energie-Impuls-Tensors verschwinden lässt, woraus sich die Bewegungsgleichungen ergeben. Aber dabei setzt man die Form des Energie-Impuls-Tensors als bekannt vorraus, was letztlich wieder ein Hineinstecken von Information ist. Ich möchte gern auf einer scharfen Trennung zwischen Feldgleichung und Bewegungsgleichung beharren, weil die "Herleitung der Bewegungsgleichung aus der Feldgleichung" wie gesagt die Kenntnis des Energie-Impuls-Tensors impliziert und damit im Prinzip dieselbe Information gegeben wird, als wenn man gleich die Wirkung hinschreibt.
- Deine jetzige Version "erzeugt ein falsches Gefühl von Verständnis", weil der Eindruck erzeugt wird, man brauche die Bewegungsgleichungen eigentlich gar nicht (was nicht stimmt: In der ein oder anderen Form muss man sie reinstecken). Meine Version halte ich für ungenau aber die richtige Idee vermittelnd, nämlich dass man für die eine Richtung der Wechselwirkung die Feldgleichung anguckt und für die andere Richtung eben nicht die Feldgleichung, sondern die Bewegungsgleichung. Dass man bei bekannter Form des Energie-Impuls-Tensors aus der lokalen Energie-Impuls-Erhaltung die Bewegungsgleichungen gewinnen kann, ist eine Zusatzinformation, die auf den ersten Blick schwer einzuordnen ist und meiner bescheidenen Meinung nach auch nicht so bedeutend, dass man sie hier auswalzen muss (das kann in den Artikel zur Feldgleichung selbst). Immerhin wird bisher nicht ein Wort zur lokalen Energie-Impuls-Erhaltung verloren.
- Ich werde jetzt erstmal zurücksetzen. -- Stringtheorie 20:25, 27. Jun. 2007 (CEST)
- Zitat: "erzeugt ein falsches Gefühl von Verständnis" - es geht nun mal aber nicht in erster linie um gefühltes Verständnis sondern um eine korrekte Darstellung. Gruß Stefanwege 21:39, 27. Jun. 2007 (CEST) PS: In der Feldgleichung ist der Energie-Impuls-Tensor bereits enthalten. Das Du hier Standardwerke anzweifelst finde ich seltsam. gruß Stefanwege 21:39, 27. Jun. 2007 (CEST)
- PPS: Mit ein bißchen konstruktiver Zusammenarbeit, könnte man einen Artikel erzeugen, der korrekt und Verständlich ist. Wollen Wir das nicht machen? Gruß Stefanwege 21:44, 27. Jun. 2007 (CEST)
- Ja eben, es geht um Verständnis und ich glaube, das erzeugt deine Bemerkung nicht.
- Ich zweifle kein Standardwerk an, ich bezweifle nur den didaktischen Nutzen einer Halbwahrheit (wenn man nicht von lokaler Energie-Impuls-Erhaltung spricht ist es eine) für einen Laien.
- Ja, das möchte ich gern, ich finde nur, dass du die Bearbeitung teilweise etwas übers Knie brinchst und dabei den sowieso schon labilen "roten Faden" des Artikels manchmal weghaust.
- MfG -- Stringtheorie 23:10, 27. Jun. 2007 (CEST)
- In dem Buch wird es als fundamentales Prinzip dargestellt, welches nicht nur für Teilchen sondern auch für die die Wechselwirkungen beschreibendeen Felder (die haben ja auch einen Energie-Impuls-Tensor) gilt. Letztlich wird also nach der Vorgabe eines Energie-Impuls-Tensors eines klassischen (nicht quantenmech.) Systems über die Einsteinsche Feldgleichung die gesammte Zeitentwicklung des Systems festgelegt. Gruß Stefanwege 14:24, 28. Jun. 2007 (CEST)
- Ja, mir ist schon klar, dass die gesamten Bewegungsgleichungen auch mit Feldern rauskommen müssen, da die auch in die Erhaltungsgrößen mit eingehen. Es ist eine Weisheit aus der klassischen Mechanik (namentlich beim Hamilton-Jacobi-Formalismus), dass Erhaltungssätze die Dynamik festlegen. Von Erhaltungsgrößen ist aber in der jetzigen Formulierung nicht die Rede (wie auch, wenn der Artikel dazu schweigt). Damit bleibt die Artikelformulierung eine Halbwahrheit, die (so fürchte ich) den Eindruck erzeugen könnte, die Betrachtung der Bewegungsgleichungen sei "nicht nötig" weil die Information ja schon in der Feldgleichung steckt. Man rechnet aber eben doch mit den Bewegungsgleichungen, d.h. sie haben rein praktisch einen Sinn. -- Stringtheorie 19:32, 28. Jun. 2007 (CEST)
Darf ich mal einen Dreiviertellaien-Einwurf machen? Ist der Edit-War nicht schon allein deswegen pointless, weil die Bewegung von einem Punktteilchen in dem von ihm erzeugten G-Feld zwar von gewissem mathematischen aber eher esoterischem physikalischen Interesse ist. Im typischen Anwendungsgebiet der ART geht doch auch immer die Zustandsgleichung in die Zeitentwicklung des Systems ein. --Pjacobi 21:57, 27. Jun. 2007 (CEST)
- Das Prinzip gilt nicht nur für Punktteilchen. Du hast soweit recht, dass es schade ist das der Artikel nur auf die Bewegung von Punktteilchen näher eingeht und die Bewegungsgleichungen von Felder (kaum) erklärt. Gruß Stefanwege 22:17, 27. Jun. 2007 (CEST)
- Für ein Fluid ist es recht schwierig, Rückreaktionen zu berechnen (d.h. Bewegungsgleichungen zu lösen). Da gibt es einen Physics Report von 1991 von Mukhanov, Feldman und Brandenberger, wo sie das Gebiet resümieren. (Die machen noch einiges mit Quantisierung, was hier unwichtig ist.) Bei der Einsteingleichung macht der Artikel keine Beschränkung auf einzelne Teilchen. Der Energie-Impuls-Tensor wird nicht spezifiziert (u.a. daher finde ich es auch im Artikelkontext ungünstig die Herleitung der Bewegungsgleichungen aus selbigem zu erwähnen). Die Bewegungsgleichungen für Punktteilchen gehen nach dem Birkhoff-Theorem auch für Kugeln, daher ist das ganze für die Planetenmechanik durchaus auch praktisch nutzbar. (Naja, man rechnet immer mit Näherungen...) Für ein Fluid ist das Ganze wie gesagt etwas komplizierter und es gibt einerseits die oben erwähnte Theorie kosmologischer Störungen, andererseits gibts auch eine allgemeinrelativistische statistische Mechanik (z.B. zur Herleitung der vollständigen Schwarzschild-Lösung). -- Stringtheorie 23:10, 27. Jun. 2007 (CEST)
Die Diskussion hier MUSS im Großen und Ganzen zu Gunsten von Stefanwege ausgehen, da sie die fundiertere ist (allerdings sind auch in seiner Argumentation Seltsamkeiten). Andernfalls steht dieser Absatz einer Exzellenz definitiv im Wege. Ich habe diese Themen mit meinen beiden Kollegen, die seit 10, bzw. 40 Jahren annerkannte Experten (Postdoc und Professor) in diesen Themen sind (ich will damit nicht Eure offensichtliche Qualifikation anzweifeln, sondern nur verhindern, dass mir gleich jemand erklärt, was ein Tensor ist...) , diskutiert und es gibt da überhaupt keinen Zweifel. Es gibt in der ART keine Trennung zwischen Feldgleichungen und Bewegungsgleichungen. Die Feldgleichungen, die die Divergenzfreiheit des E-I-Tensors erzwingen, beinhalten damit die Bewegungsgleichungen, die keine unabhängige Bedeutung mehr besitzen (anders als in der E-dynamik). Sätze wie „Die Bewegungsgleichungen für Punktteilchen gehen nach dem Birkhoff-Theorem auch für Kugeln“ sind leider komplett inhaltsfrei, da das Birkhoff-Theorem nur für kugelsymmetrische Gesamtverteilungen und sicherlich nicht für planetare Mehrteilchenprobleme (!) gilt (sonst könnte man ja schön das Zweikörperproblem lösen). Jede Bewegungsgleichung, wie z.B. die für Punktteilchen - also die Geodätengleichung, muss aus den Feldgleichungen (bzw. Divergenzfreiheit) ableitbar sein. Andere Bewegungsgleichungen, wie z.B. die Maxwellgleichungen in Kopplung, entspringen direkt aus dem Äquivalenzprinzip!. Übrigens sind im Absatz Feldgleichungen noch andere gravierende Fehler bzw. Unklarheiten. Man kann z.B. nicht einfach die E-I-Verteilung vorgeben und dann die Metrik berechnen, da auf der rechten Seite der Gleichung i.Allg. auch die Metrik steht! Der Weyl-Tensor ist natürlichj nicht völlig unabhängig, vom E-I-Tensor, da er über die Bianchi-Identität an Ricci und damit an T gekoppelt ist ( Paper von Ellis, suche ich raus). --CWitte 11:36, 6. Jul. 2007 (CEST)
Wirkung
Meiner Meinung nach ist dieser Abschnitt für einen Einstiegsartikel schon sehr speziell. Ich denke dieser Abschnitt wäre besser im Artikel zu den Einsteinschen Feldgleichungen aufgehoben. Gruß Stefanwege 01:01, 28. Jun. 2007 (CEST)
- Ja, der Abschnitt ist sehr speziell, aber jemand, der sich ein bisschen mit theoretischer Physik auseinandergesetzt hat, kennt das Wirkungsprinzip. Ich fand es zumindest sinnvoll, zu bemerken, dass das hier auch funktioniert. Die Feldgleichung und die Bewegungsgleichung ergeben sich ja sehr simpel aus der Wirkung und ich finde, man sieht der Wirkung sogar eine gewisse "Minimalität" an. Ich würde sagen, im Kontext der ART als Feldtheorie sollte die Wirkung nicht fehlen. Jemand der noch nie vom Wirkungsprinzip gehört hat, wird von diesem Kapitel natürlich wenig haben. -- Stringtheorie 09:20, 28. Jun. 2007 (CEST)
- Wenn ich es richtig verstehe, hast du die Wirkung reingenommen, weil es die schönste Herleitung der Feldgleichung ist. Das sehe ich auch so. Trotzdem finde ich diesen Abschnitt in diesem Artikel nicht besonders glücklich, weil er meiner Meinung nach den "roten Faden" in diesem Artikel zerreißt und in diesr Ausführlichkeit auch weit über das Niveau des restlichen Artikels hinausgeht. - Ich fände eine kurze Bemerkung im Abschnitt Feldgleichung besser. Gruß Stefanwege 14:35, 28. Jun. 2007 (CEST)
- Du hast recht: Jemand der das Wirkungsprinzip nicht kennt, wird sich wundern, was das Kapitel überhaupt aussagen soll. Ich denke aber es ist zu erwarten, dass bei diesem Artikel nicht hauptsächlich Volllaien nachschlagen. Daher würde ich gern im Mathe-Kapitel, dessen Überschrift schon gewissermaßen eine Warnung an Volllaien ist, das weiterführende Konzept der Wirkung kurz anreißen. Ich finde, der Artikel darf auch mal ein kleines Stück vom Laien weg zum halbgebildeten Leser rübertreten. Dafür empfinde ich gerade auch die Überschrift "Wirkung" als passend, weil die in der TOC auftaucht. Falls das Kapitel aber raus soll, würde ich vorschlagen, es in den eigenen Artikel Einstein-Hilbert-Wirkung zu packen und selbigen in einem Satz im Feldgleichungskapitel zu verlinken. -- Stringtheorie 20:02, 28. Jun. 2007 (CEST)
- Wenn ich es richtig verstehe, hast du die Wirkung reingenommen, weil es die schönste Herleitung der Feldgleichung ist. Das sehe ich auch so. Trotzdem finde ich diesen Abschnitt in diesem Artikel nicht besonders glücklich, weil er meiner Meinung nach den "roten Faden" in diesem Artikel zerreißt und in diesr Ausführlichkeit auch weit über das Niveau des restlichen Artikels hinausgeht. - Ich fände eine kurze Bemerkung im Abschnitt Feldgleichung besser. Gruß Stefanwege 14:35, 28. Jun. 2007 (CEST)
Felder
Ich fände es wichtig, dass die kovarianten Verallgemeinerungen von spezialrelativistische Feldgleichungen(z.B Maxwellgleichungen) erwähnt werden. Im Moment kommt beim oberflächlichen Lesen der Verdacht auf die ART würd nur die Bewegung von Punktteilchen beschreiben. Gruß Stefanwege 14:41, 28. Jun. 2007 (CEST)
- Hast du das gelesen:
- "Die Kräfte berechnen sich im allgemeinen etwas anders als in der speziellen Relativitätstheorie. In den Formeln für die Kräfte, zum Beispiel in den Maxwell-Gleichungen, werden anstelle der partiellen Ableitungen nach Raumzeitkomponenten nun kovariante Ableitungen in den Bewegungsgleichungen verwendet. Da die Ableitungen nach Raumzeitkomponenten die Änderungen einer Größe beschreiben, heißt das, dass die Änderungen aller Felder (also ortsabhängige Größen) nun in der gekrümmten Raumzeit beschrieben werden müssen. Welche Ersetzungen genau in den Formeln gemacht werden müssen, ist dem Artikel Christoffelsymbole zu entnehmen."
- Meinst du man sollte die kovarianten Maxwell-Gleichungen explizit hinschreiben? Das wäre dann aber entweder viel Erklärungsaufwand oder laienuntauglich. -- Stringtheorie 19:36, 28. Jun. 2007 (CEST)
- Ja ich denke das sollte man machen. Aber ohne Christoffelsymbole, sondern einfach mit Semikolons oder Doppelstrichen für die kovariante Ableitung. Damit man gleich sieht, dass die Gleichungen von der Form her gleichbleiben und man nur die partiellen Ableitungen durch kovariante Ableitung Ersetzen muss. Außerdem sollte man erwähnen das auf diese Weise automatisch das (schwache) Äquivalenzprinzip erfüllt wird. Gruß Stefanwege 22:33, 28. Jun. 2007 (CEST)
Gravitationswellen
Wie ich bereits in der Exzellenzdiskusssion angemerkt habe, ist der Abschnitt über Gravitationswellen(GW) so nicht wirklich gut. Dazu ein paar Ausführungen.
Der Ansatz ist in seiner mechanistischen Argumentation fragwürdig. Warum wird in einer so modernen Theorie mit Laplace argumentiert? Gravitationswellen werden i.Allg. in den modernen Lehrbüchern über die so genannte Linearisierung hergeleitet und diskutiert. Der Aberrations-Schnickschnack mag ganz nett und interessant für den Kenner sein, kann aber kaum als Einführung dienen. Die Argumentation, die hier steht ist viel zu heuristisch, um der ART angemessen zu sein (das soll keine Kritik an unvermeidbarer Vereinfachung der Darstellung sein). Z.B. steht dort Die vorhergesagten Gravitationswellen sind transversale Wellen, ein Satz, Das Problem, dass die Wellenlösungen zunächst nur in der linearisierten Näherung betrachtet werden, kann man auch gut durch Verweis auf den ganz ordentlichen Hauptartikel Gravitationswellen behandeln.--CWitte 13:41, 5. Jul. 2007 (CEST) der sich nicht aus der vorherigen Darstellung tatsächlich ableiten ließe!
Tatsächlich gibt es immer noch konzeptuelle Probleme bei der Theorie der GW in der ART (siehe z.B. H. Stephani: ART, Kap. 15). Die Quelle-Welle-Kopplung ist nicht so einfach wie in der linearen Elektrodynamik, insbesondere die Rückkopplung an die Quelle bereitet Probleme.
- Noch ne Anmerkung: Der Große Meister (A.E.) selbst hat mit Infeld und Hoffmann ganz fundamentale Kritik an der ganzen Sache geäußert. Nur um klar zu stellen, dass A.E. kein großer Anhänger der G.W. war.--CWitte 12:12, 6. Jul. 2007 (CEST)
- Meinst du, die Aberration sollte dann lieber ganz raus? Das ist ja keine Erklärung der Gravitationswellen. Das sollte auch im Artikel eigentlich nicht so rüberkommen. Es ist ja auch keine der großen Vorhersagen der ART, sondern eher eine Art "Vermeidung eines potentiellen Fehlers". Muss ja nicht in einem Lexikon stehen, oder?
- Die konzeptuellen Probleme würde ich gern in 1-2 Sätze verbannen, um es hier kurz zu halten. (Hier soll eher nur das Phänomen erklärt werden.) Das kann dann bei Gravitationswelle genauer besprochen werden. Ich suche mal einen Stephani, um die "richtigen" Sätze zu schreiben. -- Stringtheorie 11:55, 6. Jul. 2007 (CEST)
- Ja, Aberration ganz raus. Das ist eher historischer Ballast. 1-2 sätze über kontextuelle Problem müssen an dieser Stelle sicher ausreichen. Alles andere in den Hauptartikel.
- Ich habe ja jetzt ne ganze Menge Kritik geäußert, will aber hier nicht einfach nur rumnörgeln. Wir haben in unsere Arbeitsgruppe ART eine ganze Menge Punkte, die wir auch konstruktiv vorschlagen würden. Ist dafür Deine Sandbox der geeignete Ort?--CWitte 12:07, 6. Jul. 2007 (CEST)