Palais Dürckheim in Weimar - Ansicht NordOst
Artikel wird gerade bearbeitet!! eigentlich ständig, da dies nur eine Seite für Zwischenlager aller Art ist
Unterseiten:
http://de.wikipedia.org/wiki/Benutzer:Stephan_Schwarzbold/palais_Dürckheim
http://de.wikipedia.org/wiki/Benutzer:Stephan_Schwarzbold/Vetrauen
Ich: Baujahr 1977; Tischlermeister, Student der Architektur in Weimar; viel unterwegs real und hier .
Vereinfachung Wärmeträgheitswert für mehrschichtige Bauteile:
D
=
∑
D
i
=
∑
R
i
⋅
S
i
{\displaystyle D=\sum {D_{i}}=\sum {R_{i}\cdot S_{i}}}
Formel.Waermetraegheitswert.einfach.png
R
=
∑
R
i
{\displaystyle R=\sum R_{i}}
Formel.R_Summe.png
S
24
=
D
R
=
∑
R
i
⋅
S
i
∑
R
i
{\displaystyle S_{24}={\frac {D}{R}}={\frac {\sum {R_{i}\cdot S_{i}}}{\sum R_{i}}}}
Formel.S24.png
Θ
=
0
,
45
(
1
+
S
α
a
+
α
i
S
+
α
i
α
a
)
⋅
exp
D
2
{\displaystyle \Theta =0{,}45{\bigg (}1+{\frac {S}{\alpha _{a}}}+{\frac {\alpha _{i}}{S}}+{\frac {\alpha _{i}}{\alpha _{a}}}{\bigg )}\cdot \exp {\frac {D}{\sqrt {2}}}}
Formel.TAV.einfach.png
H
C
=
∑
ρ
i
c
i
s
i
{\displaystyle HC=\sum {\rho _{i}c_{i}s_{i}}}
Formel.HC.png
S = max(S24 & [sqrt((0,0085² HC) / R])
S
=
max
(
S
24
,
0,008
5
2
⋅
H
C
R
)
{\displaystyle S=\max \left(S_{24},{\frac {\sqrt {0{,}0085^{2}\cdot HC}}{R}}\right)}
Formel.Differenzierung.S_max.png
näherungsweise Vereinfachung Phasenverschiebung:
ν
≈
0,113
t
0
⋅
D
−
0,017
t
0
≈
2
,
7
D
−
0
,
4
{\displaystyle \nu \approx 0{,}113t_{0}\cdot D-0{,}017t_{0}\approx 2{,}7D-0,4}
bei
t
0
=
24
h
{\displaystyle t_{0}=24h}
Phasenverschiebung einschalig:
ν
=
1
15
⋅
(
40
,
5
⋅
∑
D
−
arctan
R
s
i
R
s
i
+
S
⋅
2
+
arctan
S
S
+
R
s
e
⋅
2
)
{\displaystyle \nu ={\frac {1}{15}}\cdot \left(40{,}5\cdot \sum D-\arctan {\frac {R_{si}}{R_{si}+S\cdot {\sqrt {2}}}}+\arctan {\frac {S}{S+R_{se}\cdot {\sqrt {2}}}}\right)}
Phasenverschiebung zweischalig:
ν
=
1
15
⋅
(
40
,
5
⋅
∑
D
−
arctan
R
s
i
R
s
i
+
U
i
⋅
2
+
arctan
U
a
U
a
+
R
s
e
⋅
2
)
{\displaystyle \nu ={\frac {1}{15}}\cdot \left(40{,}5\cdot \sum D-\arctan {\frac {R_{si}}{R_{si}+U_{i}\cdot {\sqrt {2}}}}+\arctan {\frac {U_{a}}{U_{a}+R_{se}\cdot {\sqrt {2}}}}\right)}
das TAV ist der Kehrwert der TAD:
ν
=
1
Θ
{\displaystyle \nu ={\frac {1}{\Theta }}}
bei d-größergleich-1:
U
i
=
R
i
⋅
S
i
2
+
U
i
−
1
1
+
R
i
⋅
U
i
−
1
{\displaystyle U_{i}={\frac {R_{i}\cdot S_{i}^{2}+U_{i-1}}{1+R_{i}\cdot U_{i-1}}}}
TAD-mehrschichtige Wand:
Θ
=
0
,
9
⋅
(
S
1
+
R
s
i
S
1
+
U
1
⋅
(
∏
S
n
+
U
n
−
1
S
n
+
U
n
)
⋅
R
s
e
+
U
n
R
s
e
)
⋅
exp
(
∑
D
i
2
)
{\displaystyle \Theta =0{,}9\cdot \left({\frac {S_{1}+R_{si}}{S_{1}+U_{1}}}\cdot \left(\prod {\frac {S_{n}+U_{n-1}}{S_{n}+U_{n}}}\right)\cdot {\frac {R_{se}+U_{n}}{R_{se}}}\right)\cdot \exp \left(\sum {\frac {D_{i}}{\sqrt {2}}}\right)}
Wärmespeicherkennwert:
für D-größergleich-1
U
=
S
{\displaystyle U=S}
für D<1
U
=
R
⋅
S
2
+
R
s
i
1
+
R
⋅
R
s
e
{\displaystyle U={\frac {R\cdot S^{2}+R_{si}}{1+R\cdot R_{se}}}}
Wärmespeicherkennwert
S
=
0
,
0085
⋅
b
{\displaystyle S=0,0085\cdot b}
Wärmedurchlasswiederstand
D
=
S
⋅
R
i
{\displaystyle D=S\cdot R_{i}}
TAD-einschichtig:
Θ
=
0
,
9
⋅
(
S
+
R
s
i
)
⋅
(
R
s
e
+
U
)
(
S
+
U
)
⋅
R
s
e
⋅
exp
(
D
2
)
{\displaystyle \Theta =0{,}9\cdot {\frac {(S+R_{si})\cdot (R_{se}+U)}{(S+U)\cdot R_{se}}}\cdot \exp \left({\frac {D}{\sqrt {2}}}\right)}
U
=
1
R
s
e
+
∑
s
i
λ
i
+
R
s
i
{\displaystyle U={\frac {1}{R_{se}+\sum {\frac {s_{i}}{\lambda _{i}}}+R_{si}}}}
U
=
1
R
s
e
+
∑
R
i
+
R
s
i
{\displaystyle U={\frac {1}{R_{se}+\sum R_{i}+R_{si}}}}
R
n
o
m
=
d
n
o
m
λ
n
o
m
↙
{\displaystyle R_{nom}={\frac {d_{nom}}{\lambda _{nom}}}\qquad \swarrow }
R
n
o
m
=
d
n
o
m
λ
n
o
m
{\displaystyle R_{nom}={\frac {d_{nom}}{\lambda _{nom}}}}
Δ
R
=
∂
R
∂
d
Δ
d
−
∂
R
∂
λ
Δ
λ
↙
{\displaystyle \Delta R={\frac {\partial R}{\partial d}}\Delta d-{\frac {\partial R}{\partial \lambda }}\Delta \lambda \qquad \swarrow }
Δ
R
=
∂
R
∂
d
Δ
d
−
∂
R
∂
λ
Δ
λ
{\displaystyle \Delta R={\frac {\partial R}{\partial d}}\Delta d-{\frac {\partial R}{\partial \lambda }}\Delta \lambda }
Δ
R
=
1
λ
Δ
d
−
d
λ
2
Δ
λ
↙
{\displaystyle \Delta R={\frac {1}{\lambda }}\Delta d-{\frac {d}{\lambda ^{2}}}\Delta \lambda \qquad \swarrow }
Δ
R
=
1
λ
Δ
d
−
d
λ
2
Δ
λ
{\displaystyle \Delta R={\frac {1}{\lambda }}\Delta d-{\frac {d}{\lambda ^{2}}}\Delta \lambda }
Δ
R
e
f
f
=
R
+
Δ
R
{\displaystyle \Delta R_{eff}=R+\Delta R}
R
e
f
f
≥
R
e
r
f
{\displaystyle R_{eff}\geq R_{erf}}
Z
90
%
=
90
%
⋅
1
80
%
Z
=
1,125
⋅
Z
{\displaystyle Z_{90\%}={\frac {90\%\cdot 1}{80\%}}Z=1{,}125\cdot Z}
λ
10
,
t
r
=
λ
10
,
g
1
+
6
⋅
u
v
↙
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+6\cdot u_{v}}}\qquad \swarrow }
λ
10
,
t
r
=
λ
10
,
g
1
+
6
⋅
u
v
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+6\cdot u_{v}}}}
λ
10
,
t
r
=
λ
10
,
g
1
+
u
m
↙
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+u_{m}}}\qquad \swarrow }
λ
10
,
t
r
=
λ
10
,
g
1
+
u
m
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+u_{m}}}}
λ
10
,
t
r
=
λ
10
,
g
1
+
u
m
2
↙
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+{\frac {u_{m}}{2}}}}\qquad \swarrow }
λ
10
,
t
r
=
λ
10
,
g
1
+
u
m
2
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+{\frac {u_{m}}{2}}}}}
λ
10
,
t
r
=
λ
10
,
g
1
+
6
⋅
u
v
↙
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+6\cdot u_{v}}}\qquad \swarrow }
λ
10
,
t
r
=
λ
10
,
g
1
+
6
⋅
u
v
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{10,g}}{1+6\cdot u_{v}}}}
λ
Z
90
%
=
λ
10
,
t
r
⋅
(
1
+
Z
90
%
)
↙
{\displaystyle \lambda _{Z90\%}=\lambda _{10,tr}\cdot (1+Z_{90\%})\qquad \swarrow }
λ
Z
90
%
=
λ
10
,
t
r
⋅
(
1
+
Z
90
%
)
{\displaystyle \lambda _{Z90\%}=\lambda _{10,tr}\cdot (1+Z_{90\%})}
λ
R
=
1
,
05
λ
10
,
t
r
⋅
(
1
+
Z
90
%
)
↙
{\displaystyle \lambda _{R}=1{,}05\lambda _{10,tr}\cdot (1+Z_{90\%})\qquad \swarrow }
λ
R
=
1
,
05
λ
10
,
t
r
⋅
(
1
+
Z
90
%
)
{\displaystyle \lambda _{R}=1{,}05\lambda _{10,tr}\cdot (1+Z_{90\%})}
λ
10
,
t
r
=
λ
4108
1
+
Z
↙
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{4108}}{1+Z}}\qquad \swarrow }
λ
10
,
t
r
=
λ
4108
1
+
Z
{\displaystyle \lambda _{10,tr}={\frac {\lambda _{4108}}{1+Z}}}
Δ
λ
=
λ
R
−
λ
4108
↙
{\displaystyle \Delta \lambda =\lambda _{R}-\lambda _{4108}\qquad \swarrow }
Δ
λ
=
λ
R
−
λ
4108
{\displaystyle \Delta \lambda =\lambda _{R}-\lambda _{4108}}
Δ
λ
=
1
,
05
λ
4108
1
+
Z
⋅
(
1
+
Z
90
%
)
−
λ
4108
↙
{\displaystyle \Delta \lambda =1{,}05{\frac {\lambda _{4108}}{1+Z}}\cdot (1+Z_{90\%})-\lambda _{4108}\qquad \swarrow }
Δ
λ
=
1
,
05
λ
4108
1
+
Z
⋅
(
1
+
Z
90
%
)
−
λ
4108
{\displaystyle \Delta \lambda =1{,}05{\frac {\lambda _{4108}}{1+Z}}\cdot (1+Z_{90\%})-\lambda _{4108}}
Δ
λ
=
(
1
,
05
λ
4108
1
+
Z
⋅
(
1
+
Z
90
%
)
)
−
λ
4108
↙
{\displaystyle \Delta \lambda =\left({\frac {1{,}05\lambda _{4108}}{1+Z}}\cdot (1+Z_{90\%})\right)-\lambda _{4108}\qquad \swarrow }
Δ
λ
=
(
1
,
05
λ
4108
1
+
Z
⋅
(
1
+
Z
90
%
)
)
−
λ
4108
{\displaystyle \Delta \lambda =\left({\frac {1{,}05\lambda _{4108}}{1+Z}}\cdot (1+Z_{90\%})\right)-\lambda _{4108}}
Δ
λ
=
(
1
,
05
λ
4108
1
+
Z
⋅
(
1
+
1,125
Z
)
)
−
λ
4108
↙
{\displaystyle \Delta \lambda =\left({\frac {1{,}05\lambda _{4108}}{1+Z}}\cdot (1+1{,}125Z)\right)-\lambda _{4108}\qquad \swarrow }
Δ
λ
=
(
1
,
05
λ
4108
1
+
Z
⋅
(
1
+
1,125
Z
)
)
−
λ
4108
{\displaystyle \Delta \lambda =\left({\frac {1{,}05\lambda _{4108}}{1+Z}}\cdot (1+1{,}125Z)\right)-\lambda _{4108}}
Z
=
λ
4108
λ
10
,
t
r
−
1
{\displaystyle Z={\frac {\lambda _{4108}}{\lambda _{10,tr}}}-1}
Δ
R
1
=
1
1
,
00
⋅
(
−
0,005
)
−
0
,
02
1
,
00
2
⋅
0,078
=
−
0,006
56
{\displaystyle \Delta R_{1}={\frac {1}{1{,}00}}\cdot (-0{,}005)-{\frac {0{,}02}{1{,}00^{2}}}\cdot 0{,}078=-0{,}00656}
Δ
R
2
=
1
0
,
23
⋅
(
−
0
,
01
)
−
0,365
0
,
23
2
⋅
0,015
=
−
0,146
98
{\displaystyle \Delta R_{2}={\frac {1}{0{,}23}}\cdot (-0{,}01)-{\frac {0{,}365}{0{,}23^{2}}}\cdot 0{,}015=-0{,}14698}
Δ
R
3
=
1
0
,
70
⋅
(
−
0,005
)
−
0,015
0
,
70
2
⋅
0,053
=
−
0,008
77
{\displaystyle \Delta R_{3}={\frac {1}{0{,}70}}\cdot (-0{,}005)-{\frac {0{,}015}{0{,}70^{2}}}\cdot 0{,}053=-0{,}00877}
R
1
=
0
,
02
1
,
00
=
0
,
02
R
e
f
f
,
1
=
0
,
02
+
(
−
0,006
56
)
=
0,013
44
{\displaystyle R_{1}={\frac {0{,}02}{1{,}00}}=0{,}02\qquad R_{eff,1}=0{,}02+(-0{,}00656)=0{,}01344}
R
2
=
0,365
0
,
23
=
1,587
R
e
f
f
,
2
=
1,587
+
(
−
0,146
98
)
=
1,439
98
{\displaystyle R_{2}={\frac {0{,}365}{0{,}23}}=1{,}587\qquad R_{eff,2}=1{,}587+(-0{,}14698)=1{,}43998}
R
3
=
0,015
0
,
70
=
0,021
R
e
f
f
,
3
=
0,021
+
(
−
0,008
77
)
=
0,012
66
{\displaystyle R_{3}={\frac {0{,}015}{0{,}70}}=0{,}021\qquad R_{eff,3}=0{,}021+(-0{,}00877)=0{,}01266}
U
e
f
f
=
1
0
,
13
+
1,466
08
+
0
,
04
=
0
,
61
{\displaystyle U_{eff}={\frac {1}{0{,}13+1{,}46608+0{,}04}}=0{,}61}
Wärmeeindringungskoeffizient:
b
=
c
⋅
λ
⋅
ρ
{\displaystyle b={\sqrt {c\cdot \lambda \cdot \rho }}}
porosität:
c
p
=
1
−
ρ
n
ρ
g
{\displaystyle c_{p}=1-{\frac {\rho _{n}}{\rho _{g}}}}
Temperaturamplitudendämpfung
Θ
=
1
ν
=
Δ
θ
^
e
Δ
θ
^
i
≥
1
,
0
{\displaystyle \Theta ={\frac {1}{\nu }}={\frac {\Delta {\hat {\theta }}_{e}}{\Delta {\hat {\theta }}_{i}}}\geq 1{,}0}