e ln x = x , ∀ x ∈ R + {\displaystyle e^{\ln {x}}=x,\forall x\in \mathbb {R} ^{+}}
ln ( a ⋅ b ) = ln a + ln b {\displaystyle \ln({a\cdot b})=\ln a+\ln b}
ln a b = ln a − ln b {\displaystyle \ln {a \over b}=\ln a-\ln b}
P ( w i | C ) = N C , i N C {\displaystyle P(w_{i}|C)={N_{C,i} \over N_{C}}}
P ( A | B ) = P ( B | A ) ⋅ P ( A ) P ( B ) {\displaystyle P(A|B)={{P(B|A)\cdot P(A)} \over {P(B)}}}
P ( w 1 , w 2 , . . . , w n | C ) = P ( w 1 | C ) ⋅ P ( w 2 | C ) ⋅ . . . ⋅ P ( w n | C ) = ∏ k = 1 i N C , k N C {\displaystyle P(w_{1},w_{2},...,w_{n}|C)=P(w_{1}|C)\cdot P(w_{2}|C)\cdot ...\cdot P(w_{n}|C)={\prod _{k=1}^{i}{N_{C,k} \over N_{C}}}}
P ( S p a m ) = N S p a m ∏ k = 1 i N S p a m , k N S p a m N H a m ∏ k = 1 i N H a m , k N H a m {\displaystyle P(Spam)={{\color {Brown}N_{Spam}}\prod _{k=1}^{i}{{\color {Red}N_{Spam,k}} \over {\color {Brown}N_{Spam}}} \over {{\color {Blue}N_{Ham}}\prod _{k=1}^{i}{{\color {OliveGreen}N_{Ham,k}} \over {\color {Blue}N_{Ham}}}}}}
P ( S p a m ) = N S p a m N H a m ∏ k = 1 i N S p a m , k N H a m , k ∏ k = 1 i N H a m N S p a m | ln ( . . . ) {\displaystyle P(Spam)={{{\color {Brown}N_{Spam}} \over {\color {Blue}N_{Ham}}}{\prod _{k=1}^{i}{{\color {Red}N_{Spam,k}} \over {\color {OliveGreen}N_{Ham,k}}}}{\prod _{k=1}^{i}{{\color {Blue}N_{Ham}} \over {\color {Brown}N_{Spam}}}}}|\ln(...)}
ln ( P ( S p a m ) ) = ln ( N S p a m ) − ln ( N H a m ) + ∑ k = 1 i ln ( N S p a m , k N H a m , k ) + ∑ k = 1 i ln ( N H a m N S p a m ) {\displaystyle \ln(P(Spam))={\ln({\color {Brown}N_{Spam}})-\ln({\color {Blue}N_{Ham}})+\sum _{k=1}^{i}{\ln \left({{\color {Red}N_{Spam,k}} \over {\color {OliveGreen}N_{Ham,k}}}\right)}+\sum _{k=1}^{i}{\ln \left({{\color {Blue}N_{Ham}} \over {\color {Brown}N_{Spam}}}\right)}}}
ln ( P ( S p a m ) ) = ( i − 1 ) ( ln ( N H a m ) − ln ( N S p a m ) ) + ∑ k = 1 i ( ln ( N S p a m , k ) − ln ( N H a m , k ) ) {\displaystyle \ln(P(Spam))={{\Bigl (}i-1{\Bigr )}{{\Bigl (}\ln({\color {Blue}N_{Ham}})-\ln({\color {Brown}N_{Spam}}){\Bigr )}}+\sum _{k=1}^{i}{{\Bigl (}\ln({\color {Red}N_{Spam,k}})-\ln({\color {OliveGreen}N_{Ham,k}}){\Bigr )}}}}
P ( S p a m ) = exp ( ( i − 1 ) ( ln ( N H a m ) − ln ( N S p a m ) ) + ∑ k = 1 i ( ln ( N S p a m , k ) − ln ( N H a m , k ) ) ) {\displaystyle P(Spam)=\exp {\Biggl (}{{\Bigl (}i-1{\Bigr )}{{\Bigl (}\ln({\color {Blue}N_{Ham}})-\ln({\color {Brown}N_{Spam}}){\Bigr )}}+\sum _{k=1}^{i}{{\Bigl (}\ln({\color {Red}N_{Spam,k}})-\ln({\color {OliveGreen}N_{Ham,k}}){\Bigr )}}{\Biggr )}}}
P ( S p a m ) = exp ( s u m ( l n ) + ( i − 1 ) ( h a m − s p a m ) ) {\displaystyle P(Spam)=\exp {\bigl (}{sum(ln)+(i-1)({\color {Blue}ham}-{\color {Brown}spam}){\bigr )}}}
( i − 1 ) ( ln ( N H a m ) − ln ( N S p a m ) ) {\displaystyle (i-1)(\ln({\color {Blue}N_{Ham}})-\ln({\color {Brown}N_{Spam}}))}
10 − 1500 {\displaystyle 10^{-1500}}
ln N S p a m , i N H a m , i {\displaystyle \ln {N_{Spam,i} \over N_{Ham,i}}}
s p a m = s p a m + Δ s p a m {\displaystyle spam=spam+\Delta spam}
ln ( s p a m + Δ s p a m ) − ln e ( ln ( s p a m ) − l n ) , s p a m = s p a m + n {\displaystyle \ln(spam+\Delta spam)-\ln {e^{(}\ln(spam)-ln)},spam=spam+n}