Aromaten

Kohlenwasserstoffe mit Ringstrukturen
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 29. Januar 2007 um 09:38 Uhr durch YourEyesOnly (Diskussion | Beiträge) (Änderungen von 62.224.93.102 (Beiträge) rückgängig gemacht und letzte Version von Jackalope wiederhergestellt). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Aromaten (aromatische Verbindungen) oder auch Arene sind eine wichtige Verbindungsklasse in der organischen Chemie. Sie zeichnen sich durch eine besondere Bindungsstruktur aus. Der Begriff "Aromat" deutet nicht grundsätzlich auf ein besonderes Aroma dieser Substanzen hin. Er ist historisch begründet.

Aromaten sind zyklische Moleküle mit konjugierten Doppelbindungen. Sie haben, wenn sie die Aromatizitätskriterien erfüllen, besonders günstige Energieniveaus. Sie unterscheiden sich in chemischen und physikalischen Eigenschaften von den übrigen organischen Verbindungen, den Aliphaten.

Aromatizitätskriterien

Historische Definitionen

  • Aromaten sind dem Benzol verwandte Verbindungen mit oft angenehmem, aromatischem Geruch. Von diesem typischen "Duft" kommt die Bezeichnung Aromat (gr. aroma - Duft).

Diese Definition ist natürlich zu unpräzise (da subjektiv) und antiquiert (da bei Aromaten mit hohem Molekulargewicht oder stark polaren Substituenten kein Geruch wahrnehmbar ist).

  • Aromaten sind mehrfach ungesättigte Verbindungen, die gegenüber der Addition an der Doppelbindung relativ reaktionsträge sind und die stattdessen relativ leicht direkt an einer Doppelbindung eine Substitution eingehen.

Diese Namensbestimmung, die eine experimentelle Unterscheidung erlaubt, war beispielsweise im 20. Jahrhundert gültig, schon bevor die Struktur- und Bindungsverhältnisse geklärt waren. Heute wird in der Regel eine allgemeinere Definition über die elektronische Struktur bevorzugt. Die angegebenen Eigenschaften - kurz: Substitution statt Addition - sind natürlich dennoch charakteristische und sehr wichtige Merkmale.

  • Das Bindungssystem der Aromaten zeigt eine besondere Stabilität, die zum Beispiel durch den Vergleich der Hydrierungsenthalpie als Resonanzenergie bestimmt werden kann.
  • Die Resonanzfrequenz der Wasserstoffatome im Kernresonanzexperiment ist charakteristisch. Diese äußert sich in einer starken Tieffeldverschiebung für Protonen außerhalb des aromatischen Systems und einer Hochfeldverschiebung für Protonen innerhalb des aromatischen Systems.

Definition der Aromaten

Notwendige, aber nicht hinreichende Voraussetzungen für einen Aromaten:

  • Ein zyklisches Molekül, das heißt, es hat mindestens einen Ring, der in vielen Fällen ein Benzolring ist.
  • Ein vollständig über den Ring konjugiertes Doppelbindungs-System.
    Das sind entweder
    • mehrere Doppelbindungen, die bei Kohlenwasserstoffen jeweils durch genau eine Einfachbindung getrennt sind (Im Sonderfall der Arine kann auch eine Dreifachbindung auftreten.) oder
    • eine oder mehrere Doppelbindungen, die durch positiv oder negativ geladene Kohlenstoffatome oder durch Heteroatome getrennt sind.

Gleichbedeutend und kürzer lautet diese Bedingung:

Ein Aromat liegt dann vor, wenn auch die folgenden Bedingungen erfüllt sind:

  • Das Doppelbindungssystem ist planar; in Ausnahmefällen sind leichte Abweichungen von der Ebene gestattet. Zum Beispiel ist in einigen Cyclophanen die Benzoleinheit in einem Winkel von bis zu 30° bootförmig deformiert.
  • Die Zahl der delokalisierten Elektronen muss der Hückel-Regel genügen, das heißt im konjugierten Elektronensystem müssen 2 oder 6 oder 10 oder 14... Elektronen vorliegen:

Die von Erich Hückel aufgestellte Hückel-Regel wird meist durch die Formel (4n + 2) π-Elektronen (n = 0,1,2,3...), delokalisiert über alle Ringatome des Systems, wiedergegeben. Zyklisch konjugierte π-Systeme mit 4n π-Elektronen (n = 1,2,3...) heißen Antiaromaten

Die Grundstruktur vieler aromatischer Verbindungen ist das Benzol C6H6. (Die Hückel-Regel ist hier mit n=1 erfüllt: Benzol besitzt 6 π-Elektronen.) Das Benzol wird daher als einer der einfachsten aromatischen Kohlenwasserstoffe angesehen - insbesondere da die besonderen Eigenschaften aromatischer Verbindungen am Benzol und dessen Derivaten entdeckt wurde. Benzol ist gegenüber einem hypothetischen (das heißt nicht herstellbaren) Cyclohexatrien mit lokalisierten Doppelbindungen stabiler und damit weniger reaktiv.

Da laut Hückel-Regel auch ein planares, zyklisch konjugiertes System mit 2π-Elektronen als Aromat gilt, sind auch Cyclopropenium-Salze Aromaten:

Datei:Cyclopropenyl.png

Dieses Molekül ist deutlich kleiner als Benzol, da hier n = 0 ist, während beim Benzol n = 1 ist.

Reaktionen von Aromaten

Additionsreaktionen am Aromatenkern sind nur schwer zu erreichen. Überwiegend herrschen Substitutionsreaktionen vor, beispielsweise

  • Elektrophile, aromatische Substitution (zum Beispiel Sulfonierung, Nitrierung)
  • Nukleophile, aromatische Substitution (selten)

Für die Zweitsubstitution am Aromaten gelten spezielle Regeln, die von den bereits vorhandenen Substituenden abhängig sind.

Einteilung der Aromaten

Kriterien

Aromatische Systeme
Fünfringe Kondensierte Fünfringe
Datei:Furan simple structure.png
Furan
Datei:Benzofuran simple structure.png
Benzofuran
 
Isobenzofuran
 
Pyrrol
Datei:Indole simple structure.png
Indol
 
Isoindol
Datei:Thiophene simple structure.png
Thiophen
Datei:Benzothiophene simple structure.png
Benzothiophen
 
Benzo[c]thiophen
 
Imidazol
 
Benzimidazol
 
Purin
 
Pyrazol
 
Indazol
 
Datei:Oxazole simple structure.png
Oxazol
Datei:Benzoxazole simple structure.png
Benzoxazol
 
Datei:Isoxazole simple structure.png
Isoxazol
 
Benzisoxazol
 
 
Thiazol
 
Benzothiazol
 
 
Sechsringe Kondensierte Sechsringe  
Datei:Benzene simple structure.png
Benzol
Datei:Naphthalene simple structure.png
Naphthalin
Datei:Anthracene simple structure.png
Anthracen
Datei:Pyridine simple structure.png
Pyridin
Datei:Quinoline simple structure.png
Chinolin
Datei:Isoquinoline simple structure.png
Isochinolin
Datei:Pyrazine simple structure.png
Pyrazin
 
Chinoxalin
 
Acridin
Datei:Pyrimidine simple structure.png
Pyrimidin
 
Chinazolin
 
Datei:Pyridazine simple structure.png
Pyridazin
 
Cinnolin
 


Es gibt eine gewaltige Zahl (mehrere Millionen sind bekannt) verschiedenster aromatischer Verbindungen. Sie können nach verschiedenen Kriterien in Gruppen eingeteilt werden:

  • Wie alle chemische Verbindungen, bei denen zwischen organisch (enthält Kohlenstoffatome) und anorganisch unterschieden wird, können auch die Aromaten entsprechend in organisch und anorganisch unterteilt werden. Ein anorganischer Aromat ist beispielsweise das Borazol B3N3H6, das sich formal vom Benzol C6H6 ableiten lässt, indem man die Kohlenstoffatome abwechselnd durch Stickstoffatome oder Boratome ersetzt. Allerdings ist Borazol eher auf dem Papier aromatisch denn in der Praxis: Die Elektronendichten sind stark an den Stickstoffatomen lokalisiert (anstatt über den Ring gleichmäßig verteilt) und der Ring ist stark gewellt. Auch die Reaktivität bei Angriff des Rings durch Nukleophile oder Elektrophile (im Gegensatz zum trägen Benzol) zeigt eine deutliche Bindungspolarisierung.
  • Ringsysteme, die nur aus Kohlenstoffatomen bestehen, nennt man Carbocyclen. Benzol C6H6 und Naphthalin C10H8 gehören demnach zu den Carbocyclen. Heteroaromaten enthalten dagegen wie alle Heterocyclen im Ringsystem selbst andere Atome wie etwa Stickstoff, zum Beispiel im Aromaten Pyridin C5H5N. (Pyridin leitet sich formal vom Benzol ab, indem eine C-H -Atomgruppe durch N ersetzt wird.)
  • Carbocyclische Aromaten (=mit Kohlenstoffatom-Aromatengerüst) können in (aromatische) Kohlenwasserstoffe und substituierte Aromaten unterteilt werden (entsprechend der Einteilung der organischen Verbindungen). Benzol C6H6 und Toluol C6H5-CH3 sind Kohlenwasserstoffe, Phenol C6H5-OH und Trinitrotoluol TNT C6H2(NO2)3(CH3) sind daraus durch Substitution abgeleitete Verbindungen.
  • Eine weitere Einteilung erfolgt nach der Zahl der aromatischen Zyklen: Eine der einfachsten aromatischen Verbindungen, das Benzol, besteht aus genau einem Ring. Naphthalin C10H8 ist ein Bicyclus, es besitzt ein aromatisches π-System mit 10 π-Elektronen, welches über die beiden Ringe verteilt ist.
  • Aromaten mit mehreren Ringen können eingeteilt werden in solche, bei denen die Ringe gemeinsame Atome haben (kondensierte oder annelierte Ringe), wie im Naphthalin C10H8, oder solche, mit separaten (isolierten) Ringen, beispielsweise Biphenyl C6H5-C6H5.
  • Eine weitere Einteilung kann nach der Zahl der Ringatome des aromatischen Systems erfolgen. Typisch sind sechs Ringatome, etwa beim Benzol C6H6. Um einen geschlossenen Ring zu bilden, sind mindestens drei Atome nötig, und dementsprechend existieren Aromaten mit drei, vier, fünf - etwa beim C5H5- Cyclopentadien-Anion, sieben oder mehr Atomen.
  • Nach der Ladung des aromatischen Systems, zum Beispiel ist das Cyclopentadien-Anion einfach negativ geladen.

Beispiele aromatischer Verbindungen

Kohlenwasserstoffe

Aromatische Kohlenwasserstoffe werden Arene genannt. Beispiele dafür sind:

Kohlenwasserstoffe mit mehreren Ringen werden polycyclische aromatische Kohlenwasserstoffe genannt, das sind zum Beispiel:

Aromatische Ionen

Das freie Elektronenpaar besetzt ein sp2-Hybridorbital des Sauerstoffs, liegt in der Ringebene und trägt damit nicht zum π-System bei (analog zur Elektronenstruktur des Pyridins).

Vom Benzol durch Substitution abgeleitete Derivate

Heteroaromaten

  • Furan C4H4O (Fünfring mit Sauerstoffatom)
  • Thiophen C4H4S (Fünfring mit Schwefelatom)
  • Pyridin C5H5N (Sechsring mit Stickstoffatom)
  • Pyrrol C4H4NH (Fünfring mit Stickstoff-und Wasserstoffatom)


Antiaromaten

Antiaromatische Systeme
Viererringe
Datei:Cyclobutadiene structure.svg
Cyclobutadien
 

Als Antiaromaten bezeichnet man Stoffe, die die ersten drei Bedingungen eines Aromaten erfüllen (cyclisch, planar, konjugierte Doppelbindungen), statt 4n+2 π-Elektronen jedoch 4n π-Elektronen besitzen. Antiaromaten besitzen nach der Hückel-Näherung ungünstige Energieniveaus. Der einfachste Antiaromat, Cyclobutadien, kann in freier Form nicht hergestellt werden. Er ist interessanterweise in der Organometallchemie als Ligand stabil.

Cyclooctatetraen besitzt 8 π-Elektronen. Es liegt jedoch nicht planar vor, sodass die Doppelbindungen nicht konjugiert sind. Die Hückel-Regel kann also nicht angewandt werden.

Antiaromaten dürfen nicht mit den nicht-aromatischen Verbindungen, den Aliphaten, verwechselt werden.

Möbius-Aromaten

Die 1964 von Edgar Heilbronner (13. Mai.1921, München - 28. August, 2006) vorhergesagte Möbius-Aromatizität[1] setzt voraus, dass in einem zyklisch-konjugierten System die besetzten pπ-Orbitale als Möbiusband angeordnet sind, d. h. mit einer 180°-Drehung. Zusätzlich sind die π –Orbitale mit 4n Elektronen besetzt (wobei n hier eine natürliche Zahl ist). Möbius-Aromaten sind durch die Verdrehung chiral. Ob ein 2003 von Herges et al. synthetisiertes Molekül[2] wirklich einen Möbius-Aromaten darstellt oder nur die nötige Topologie besitzt, wird noch kontrovers diskutiert.[3]

Siehe auch

Referenzen

  1. Edgar Heilbronner, Tetrahedron Lett. 1964, 1923.
  2. Synthesis of a Möbius aromatic hydrocarbon D. Ajami, O. Oeckler, A. Simon, R. Herges, Nature; 2003; 426 pp 819.
  3. Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius [4 n]Annulene Aromaticity Claire Castro, Zhongfang Chen, Chaitanya S. Wannere, Haijun Jiao, William L. Karney, Michael Mauksch, Ralph Puchta, Nico J. R. van Eikema Hommes, Paul von R. Schleyer J. Am. Chem. Soc.; 2005; 127(8) pp 2425-2432 Abstract