Albinismus

Melaninmangelerkrankung
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 23. Januar 2007 um 02:22 Uhr durch Kersti Nebelsiek (Diskussion | Beiträge) (Albinismus bei Tieren: Bild). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Albinismus (v. lat. albus „weiß“) ist eine Sammelbezeichnung für angeborene Störungen in der Biosynthese der Melanine (griech. mèlas "schwarz") und dem daraus resultierenden Mangel an Pigmenten in Haut, Haaren und Augen. Die Betroffenen nennt man Albinos, viele der Betroffenen ziehen aber die neutralere Form "Menschen mit Albinismus" vor.

Albino-Pinguin
Tierpräparate im Carl-Schweizer-Museum in Murrhardt

Albinismus folgt einem rezessiven Erbgang und kommt weltweit mit einer Häufigkeit von 1:20.000 vor. Häufungen finden sich vor allem in Afrika mit einer Inzidenz von 1:10.000 und höher.

Offensichtliche Unterschiede

 
Taiwanesin mit Albinismus

Wenn sich von überall aus der Welt Menschen mit Albinismus in Hamburg treffen würden, würden einige der Schwarzen mit Albinismus sofort wegen ihrer schokoladenbraunen Hautfarbe und den braunen Augen als Schwarze ins Auge fallen. Selbst die helleren Typen würden bei uns nicht extrem auffallen: Rosa Haut, weißblondes Haar und blaue oder hellgraue Augen liegen in Deutschland auch bei Menschen ohne Albinismus noch im üblichen Rahmen.

Menschen mit Albinismus bekommen leichter Sonnenbrand und haben deshalb theoretisch ein höheres Hautkrebsrisiko. Tatsächlich hält sich jemand mit so empfindlicher Haut und Augen weniger in der Sonne auf. Deshalb liest man bei uns in Fachpublikationen normalerweise nichts über konkrete Fälle von Hautkrebs bei Albinos.

Erst wenn man sie zum Augenarzt schickt, fallen solche Menschen in den nördlichen Ländern deutlich auf:

Bei Menschen mit Albinismus fehlt im Auge Melanin (Unterpigmentierung). Dadurch ist die Iris nicht völlig undurchsichtig und das Auge ist besonders lichtempfindlich. Auch die Aderhaut des Auges enthält normalerweise Melanin. Deshalb ist eine ausgeprägte Blendungsempfindlichkeit (Photophobie) typisch für Menschen mit Albinismus. Wenn man in das Auge hineinleuchtet, zeigt sich diese mangelnde Undurchsichtigkeit durch rote Lichtreflexe. Da Licht nicht nur durch die Pupille hereinkommt sondern auch die Iris durchdringt, sind die Kontraste zwischen hellen und dunklen Stellen des Raumes nicht so deutlich. Das Farbempfinden ist normal, da Albinismus keinen Einfluß auf die Bildung des Rhodopsins hat.

 
Sehsystem des Menschen. Zur Veranschaulichung der Verarbeitungswege ist ein Ikosaeder nach den einzelnen Verarbeitungsphasen schematisch dargestellt.

Außerdem spielt Melanin auch bei der Steuerung der Entwicklung der Sehnerven eine Rolle: Bei normalen Menschen ist das Gesichtsfeld unter beiden Gehirnhälften gleichmäßig aufgeteilt: Jede Gehirnhälfte hat ihre Seite und bekommt von beiden Augen den Teil des Bildes geliefert, der zu dieser Seite gehört. Durch den Vergleich beider Bilder kann jede Gehirnhälfte die Entfernung der Gegenstände berechnen. Bei Menschen mit Albinismus kreuzt ein größerer Anteil der Sehnerven zur gegenüberligenden Gehirnhälfte, so daß die zusammengehörigen Bilder nicht immer auf derselben Seite verarbeitet werden. Deshalb ist auch das räumliche Sehen gestört.

Auch die Fovea, der Fleck des schärfsten Sehens ist nicht normal ausgeprägt, da seine Entwicklung ebenfalls durch Melanin beeinflußt wird. Außerdem sind Menschen mit Albinismus oft unfähig das Auge korrekt scharf einzustellen, viele sind kurz- oder weitsichtig.

Außerdem tritt bei Menschen mit Albinismus ein Nystagmus (Augenzittern) auf, das selbst wohl keinen störenden Einfluß auf das Sehvermögen hat und dessen Ursache noch nicht geklärt ist.

Während die meisten Menschen mit Albinismus eine hellere Augen- und Haarfarbe haben als ihre nicht albinotischen Blutsverwandten (okulokutaner Albinismus (OCA)), gibt es auch Fälle von Albinismus, bei denen sich die Symptomatik allein auch die Augenschäden beschränkt während sie äußerlich normal aussehen (okulärer Albinismus (OA)).

Bei nicht albinotischen Weißen ist die helle Hautfarbe auf eine veränderte Regulation der Melaninproduktion zurückzuführen, nicht auf eine Unfähigkeit zur Melaninproduktion. Deshalb sind ihre Augen normal gebaut und enthalten normal viel Melanin, selbst wenn die Iris blau aussieht wie bei Albinos.

Behandlung

Die geistige Entwicklung von Menschen mit Albinismus ist normal. Deshalb können sie meist, obwohl der Stoffwechseldefekt nicht therapiert werden kann, mit Hilfe von Sehhilfen, getönten Kontaktlinsen oder entsprechendem Hautschutz ein ganz normales Leben führen.

In den Fällen, wo die Sehschwäche besonders stark ist führt das zu erheblichen Problemen in der Schule, in Ausbildung und Beruf und im Alltag, weil die Betroffenen zum Beispiel große Schwierigkeiten mit dem Lesen von Büchern, beim Einkauf und im Straßenverkehr haben. Mit Sehhilfen ist aber ein großteils "normales" Leben möglich.

Physiologie des Albinismus

Melaninsynthese

Der Farbstoff Melanin wird von Melanozyten produziert. Die Vorstufen der Melanozyten, die Melanoblasten, wandern in der frühen Fetalperiode aus der Neuralleiste in die Epidermis der Haut, in die Haarfollikel und verschiedene andere Organe aus. In der Haut angelangt, differenzieren sich die Melanoblasten zu Melanozyten und bilden zahlreiche Zellfortsätze (Dendriten) aus, über die sie das Melanin an die Keratinozyten weitergeben. Die Menge der Melanozyten ist bei Schwarzen dieselbe wie bei Weißen und auch ein an Albinismus Erkrankter hat normal viele Melanozyten. Die Hautfarbe wird durch die Menge und Qualität des gebildeten Farbstoffs Melanin bestimmt, nicht durch die Anzahl dieser Zellen.

Melanozyten enthalten Melanosomen, kleine membranumschlossene Bläschen, in denen der Farbstoff Melanin produziert wird. Sie sind in ihrer Funktion den Lysosomen sehr ähnlich, denn beide enthalten Stoffe, die für die Zelle gefährlich sind und deshalb nicht mit dem Rest der Zelle in Berührung kommen dürfen. Die Lysosomen beinhalten eiweißauflösende Enzyme und die Melanosomen Zwischenprodukte der Melaninsynthese wie Quinone und Phenole, die Lipidmembranen beschädigen können.

Um Melanin zu produzieren, werden diverse Enzyme gebraucht, die nacheinander beim Aufbau des Melanins mitwirken. Wenn eines dieser Enzyme nicht mehr funktionsfähig ist, tritt Albinismus auf. Die Eumelaninbildung in den Melanosomen beginnt mit einer Hydroxylierung der Aminosäure (AS) L-Tyrosin durch das membranständige Enzym Tyrosinase. Neben diesem Schlüsselenzym sind zwei weitere ebenfalls membranständige Enzyme TRP-1 und TRP-2 nötig, damit Eumelanin gebildet werden kann.

Molekulargenetische Klassifizierung des Albinismus

Obwohl Unterschiede im Aussehen der Menschen mit Albinismus schon früh beschrieben wurden, ging man davon aus, dass Albinismus auf die Veränderungen in einem einzigen Gen zurückzuführen ist. Erst die von Trevor-Roper im Jahre 1952 beschriebene Familie, bei der beide Eltern von Albinismus betroffen waren und dennoch normal pigmentierte Kinder hatten, gab einen ersten Hinweis auf die genetische Heterogenität dieser Erkrankung. Beide Eltern waren in diesem Fall homozygot für Genmutationen, die zum Albinismus führten. Diese betrafen jedoch unterschiedliche Gene, so dass die Kinder für jede der beiden Mutationen heterozygot waren und somit klinisch nicht von Albinismus betroffen waren.

Zuerst klassifizierte man Albinismus nach dem äußeren Erscheinungsbild. Später konnte man nachweisen ob Tyrosinase - ein zur Melaninproduktion nötiges Enzym vorhanden war. Mit der Möglichkeit der Identifizierung einiger verantwortlicher Gene für den OCA etablierte sich schließlich eine molekulargenetische Klassifikation. Man stellte fest, dass die unterschiedlichen Phänotypen nicht immer auf Mutationen in unterschiedlichen Genen zurückzuführen sind, sondern oft unterschiedliche Ausprägungen diverser Mutationen in einem Gen darstellen. Die klinische Differenzierung bleibt schwierig, da nicht vom Aussehen (Phänotyp) auf die verursachende Mutation (Genotyp) geschlossen werden kann.

Okulokutaner Albinismus Typ 1

Der okulokutane Albinismus Typ 1 (OCA 1) wird durch Mutationen im Tyrosinase-Gen verursacht. Da 40 % aller von OCA Betroffenen OCA 1 haben, ist es die zweithäufigste Albinismusform. Das Tyrosinase-Gen befindet sich auf Chromosom 11 (11q14-21), beinhaltet fünf Exons und codiert für das Protein Tyrosinase mit einer Länge von 529 Aminosäuren.

Tyrosinase hat eine Schlüsselfunktion bei der Melaninsynthese. Je nachdem ob die Thyrosinase durch die Mutation völlig funktionsunfähig wird oder teilweise noch seine Funktion in der Melaninsynthese erfüllt, unterscheidet man zwei Formen von OCA1:

Menschen mit Tyrosinasenegativer OCA 1 (OCA 1A) haben völlig funktionsunfähige Tyroinase und deshalb kein Melanin. Betroffene kommen mit weißen Haaren, heller Haut und blauen, durchscheinenden Iriden zur Welt. Sie entwickeln kein Melanin im Laufe des Lebens. OCA 1A gibt es bei allen Rassen des Menschen und bei zahlreichen Tierarten. Außerdem haben sie meist eine Starke Sehbehinderung.

Bei Tyrosinasepositivem OCA 1 (OCA 1B), kann die Tyrosinase Melanin produzieren, aber nicht so gut wie normal. Die Betroffenen kommen wie bei OCA 1A ohne Pigmentierung der Haut, der Haare und der Iris zur Welt. Im Verlauf des Lebens bilden sie aber etwas Melanin. Menschen mit OCA 1B können sehr unterschiedlich aussehen, je nachdem wie gut die Thyrosinase noch funktioniert, auch die Sehbehinderung kann in unterschiedlichem Maße ausgeprägt sein. Der OCA 1B wird auch yellow OCA genannt, da das Nachdunkeln bei Betroffenen oft zu gelber Haarfarbe führt. Dies wird auf die Synthese von Phäomelanin zurückgeführt.

Auch im Tyrosinase-Gen kommen Mutationen vor, die sich nur in den Augen äußern.

Eine andere Mutation erzeugt eine Tyrosinase, deren Funktionsfähigkeit von der Temperatur abhängt. Deshalb sind sind die Haare am Körper im Gegensatz zum kühleren Kopf farblos. Solche Mutationen kommen auch im Tierreich vor, beispielsweise bei Siamkatzen.

Bisher sind über 100 verschiedene Mutationen im Tyrosinase-Gen entdeckt. Einige dieser Mutationen erzeugen zwar eine funktionierende Tyrosinase, deren Reifung im endoplasmatischem Retikulum gestört ist oder zur Störung des Transports von Tyrosinase in die Melanosomen.

Okulokutaner Albinismus Typ 2

Mit 50 % Anteil an OCA ist der OCA 2 die häufigste Albinismusform weltweit. Der OCA 2 entsteht durch Mutationen im P-Gen, welches nach dem homologen pink-eyedilution Gen der Maus benannt wurde. Das P-Gen befindet sich auf dem langen Arm von Chromosom 15 (15q11-13).

Für die Melaninproduktion braucht Thyrosinase einen niedrigen PH-Wert. Das P-Gen gehört zu einem Protein, das bekannten Ionentransportern ähnlich ist und vermutlich den niedrigen PH-Wert in den Melanosoms aufrechterhält. Bei einem durch ein fehlerhaftes Protein erhöhtem PH-Wert kann die Tyrosinase nicht mehr richtig arbeiten.

Die Phäomelanosomen sind von Mutationen im P-Gen weniger betroffen als die Eumelanosomen, deshalb haben Menschen mit OCA 2 gelbliche, blonde oder sogar braune Haare die im Verlauf ihres Lebens dunkler werden. Die Haut und Haarfarbe von Menschen aus Rassen mit dunkler Haut ist immer heller als die ihrer nicht albinotischen Verwandten. Menschen aus Ländern mit heller Haut und Haarfarbe wie beispielsweise aus Skandinavien, sehend dagegen oft völlig normal aus. Dann können nur noch die typischen Augenfehler zur Diagnose führen. Ein weiterer Phänotyp von OCA 2 ist auch unter dem Namen brauner OCA bekannt. Dieser wurde bisher nur bei Afrikanern und Afroamerikanern beschrieben. Die Betroffenen haben braune Haare, braune oder blau-grüne Iriden und eine hellbraune Haut, die leicht bräunt. Eine Sehbehinderung, Augenzittern und Strabismus werden ebenfalls gefunden.

Okulokutaner Albinismus Typ 3

OCA 3 beruht auf vorzeitigen STOP-Kodons im TRP-1Gen. Das TRP-1-Gen ist auf Chromosom 9p23 lokalisiert. Es entspricht dem sog. braunen Gen der Maus auf Chromosom 4, da Mutationen in diesem Gen bei der Maus zur braunen Fellfarbe führen. TRP-1 ist der Tyrosinase sehr ähnlich, findet sich in der Membran der Melanosomen und unterstützt die Tyrosinease in ihrer Arbeit.

Der okulokutane Albinismus Typ 3 (OCA 3) wurde erstmals 1996 beschrieben. Er führt meist zu einer roten OCA (rufous OCA oder ROCA) mit roter oder rotbrauner Haut, ingwerfarbenen oder roten Haaren und einer haselnussfarbenen Iris. Die Veränderungen am optischen Apparat sind oft weniger stark und seltener ausgeprägt als bei den anderen OCA Typen. Im Gegensatz dazu wurde beim zuerst beschriebenen Fall eine braune OCA gefunden. Da eine weitere Untersuchung des Zwillings in seinem späteren Leben nicht erfolgte, kann es sein, dass sich sein Aussehen später zur roten OCA weiterentwickelt haben könnte.

Okulokutaner Albinismus Typ 4

Der okulokutane Albinismus Typ 4 (OCA 4) wurde erst 2001 als eine neue Form des OCA beschrieben. Ausgehend von der Beobachtung, dass es bei der Maus durch Mutationen im underwhite Gen bzw. im Matp-Gen auf Chromosom 15 zur Hypopigmentierung kommt, vermutete man einen Zusammenhang des entsprechenden Gens beim Menschen mit OCA. Das MATP-Gen beim Menschen wurde auf Chromosom 5 gefunden. Möglicherweise sind beide Proteine für die Regulation des pH-Werts in den Melanosomen verantwortlich. Bei deutschen mit Ocolucutanem Albinismus macht dieser Typ etwa 3 % der Fälle aus. In der japanischen Bevölkerung kam sie in 24 % der OCA-Fälle vor. In dieser Untersuchung war OCA 4 sogar häufiger als OCA 2 (8 %) und ist damit nach OCA 1 die zweithäufigste Albinismusform in Japan.

Okulärer Albinismus Typ 1

Der okuläre Albinismus Typ-1 (OA 1) wird X-chromosomal rezessiv vererbt. Die männlichen Betroffenen zeigen klinisch alle typischen Veränderungen des optischen Apparates beim Albinismus. Die weiblichen Überträger sind nur an der stellenweisen Hypopigmentierung ihrer Netzhaut zu erkennen. Alle Melanozyten, sowohl in den Augen als auch in der Haut, weisen Makromelanosomen auf, wodurch man OCA und OA morphologisch unterscheiden kann. Man vermutet, dass das betroffene Protein ein intrazellulärer GProtein-gekoppelter Rezeptor ist und zur Melanosomentwicklung beiträgt.

Unbekannte Mutationen

Bei der Maus sind bisher über 100 Gene bekannt, die die Fell- und Augenfarbe beeinflussen. Daher ist davon auszugehen, dass es auch im menschlichen Genom noch einige bisher unbekannte Gene gibt, die die Pigmentierung beeinflussen.

Syndrome die mit Albinismus verbunden sind

Während die meisten Albinos nur eine hellere Haut und eine Sehbehinderung haben, gibt es einige Erbkrankheiten, bei denen der Albinismus mit weiteren Krankheitssymptomen vergesellschaftet auftritt.

OCA 2 assoziierte Syndrome

Zwei mit OCA 2 assoziierte Syndrome sind bekannt: das Prader-Willi-Syndrom (PWS) und das Angelman-Syndrom. Beide beruhen auf Mutation auf dem langen Arm von Chromosom 15, wo auch das P-Gen liegt, das für OCA 2 verantwortlich ist.

Prader-Willi-Syndrom (PWS)

Das Prader-Willi-Syndrom ist eine Entwicklungsstörung, welche durch niedrigen Blutdruck der neugeborenen, kleine Hände und Füße, Übergewicht, Unterentwickelte Hoden oder Eierstöcke und geistige Behinderung gekennzeichnet ist. Die Hälfte der Betroffenen PWS haben eine helle Haut- und Augenfarbe, aber nur einige davon haben die typischen Veränderungen am Auge und den zugehörigen Nerven, haben also OCA 2.

Angelman-Syndrom

Das Angelman-Syndrom ist ebenfalls eine Entwicklungsstörung. Die geistige Behinderung ist schwerer als beim PWS. Sie haben eine verringerte Muskelspannung, eine gestörte Bewegungskoordination, verkleinertes Gehirn, ein charakteristisches unmotiviertes Lachen und helle Haut und Haare. Der Anteil von hypopigmentierten Individuen mit Angelman-Syndrom unter allen von Angelman-Syndrom Betroffenen ist nicht bekannt.

Syndrome, die auf Fehlsortierung der Enzyme zurückzuführen sind

Beim Hermansky-Pudlak-Syndrom, dem Griscelli-Syndrom und dem Chédiak-Higashi-Syndrom (CHS) ist das Gen für AP-3 mutiert, ein Eiweiß das eine Funktion beim Transport verschiedener Enzyme in die Lysosomen und Melanosomen hat. Dadurch kommt die Thyrosinase nicht oder nicht in ausreichender Menge in den Melanosomen an, was zu Albinismus führt. Gleichzeitig sind auch andere Funktionen in den Lysosomen mit geschädigt, was weitere Krankheitszeichen verursacht.

Griscelli-Syndrom

Kinder mit Griscelli-Syndrom haben silber-graues Haar und Immundefekte. Wird die Erkrankung nicht behandelt, verläuft sie tödlich. Krankheitsschübe mit Fieber und eindringen von Lymphozyten in Organe führen zu Lebervergrößerung, Erkrankungen der Lymphknoten, starker Verminderung aller Blutzellen und unterschiedlichen sich dauernd verstärkenden Erkrankungen des Nervensystems. Die Krankheitsschübe konnten durch medikamentöse Therapie nur gemildert, nicht aber verhindert werden. Die einzige therapeutische Option ist die Knochenmarktransplantation. Das Griselli-Syndrom ist selten. Bei Auftreten von grauen Haaren im Kindesalter aber eine rasch abzuklärende Differenzialdiagnose, da es um so besser behandelbar ist, je früher die Krankheit erkannt wird.

Hermansky-Pudlak-Syndrom (HPS)

Das Hermansky-Pudlak-Syndrom zeigt klinisch einen OCA, eine Thrombozytenaggregationsstörung mit einer Blutungsneigung und die Akkumulation von Zeroid vor allem in den Zellen der Lunge und des Darms, was zu einer Lungenfibrose und einer granulomatösen Colitis führen kann. Das Syndrom ist weltweit beschrieben worden mit einer ungewöhnlichen Häufung in der Bevölkerung von Puerto Rico, die dort 1:1800 beträgt. Der OCA kann sich klinisch in allen Facetten der OCA-Phänotypen präsentieren. Beim Menschen sind mittlerweile sechs verschiedene HPS-Gene identifiziert worden, deren Genprodukte in den meisten Fällen noch unbekannt sind.

Chédiak-Higashi-Syndrom (CHS)

Das Chediak-Higashi-Syndrom (CHS) ist eine seltene autosomal rezessiv vererbte lysosomale Speicherkrankheit. Typische Symptome sind wiederkehrende Infekte, ein okulokutaner Albinismus, vermehrte Blutungsneigung und neurologische Ausfälle. Die Pigmentierung von Haut, Haaren und Iriden ist herabgesetzt. Die Betroffenen zeigen oft keinen eindeutigen OCA-Phänotyp, so dass nur durch den Vergleich innerhalb der Familie eine Hypopigmentierung auffällt. Veränderungen des optischen Apparates sind nicht immer nachweisbar.

Gesellschaft

Wie jeder Mensch der andersartig ist, haben Albinos in dem Maße wie sie sich von ihren Mitmenschen unterscheiden ein erhöhtes Risiko ausgegrenzt und diskriminiert zu werden. Teilweise wurden sie als Kuriositäten im Zirkus vorgeführt oder man sprach ihnen übersinnliche Kräfte zu. Bei Hellhäutigen Rassen ist die Diskriminierung nicht so häufig, da die äußerlichen Unterschiede geringer, bei blonden, hellhäutigen Rassen teilweise sogar fast nicht zu erkennen sind.

Bei dunkelhäutigen Rassen sind die Unterschiede augenfälliger und Ausgrenzung ist deshalb häufiger. Häufig stehen Albinos in Verruf, Unglück zu bringen (wie etwa im Sudan), siehe zu diesem Thema auch die Biographie des Musikers Salif Keita. In Filmen, Büchern und Computerspielen nehmen Albinos oft die Rolle des Bösen bzw. des Bösewichts ein. Im Film Powder besitzt der Protagonist zwar besondere Fähigkeiten, die er als "gottgegeben" annimmt, muss aber trotzdem um soziale Akzeptanz kämpfen.

Albinismus bei Tieren

 
Albino-Labormäuse

Bei Tieren sind die genetischen Ursachen und gesundheitlichen Folgen von Albinismus sehr ähnlich gelagert wie bei Menschen aber bei weitem nicht so genau untersucht. Es gibt also auch bei ihnen dieselben Arten von Augenschäden.

OCA1 - der Albino-Locus (C)

Dem Ocolucutanem Albinismus beim Menschen entsprechen die verschiedenen Mutationen des C-Lokus oder Albino-Locus bei Tieren. Zur Albino-Serie gehören neben völlig weißen Tieren mit roten Augen, die als einzige als Albinos bezeichnet werden eine Reihe von Allelen, die eine stufenweise Aufhellung von Haut, Haaren und Augen kontrolliert. Ausgehend von einer vollständigen Pigmentierung, wie sie im Wildtyp (C) vorliegt, wird zunächst das Phäomelanin, dann das Eumelanin reduziert.

 
Albino-Labormäuse

Bei vielen Nagetieren gibt es einen Farbschlag "Chinchilla" bei dem eine Mutation des Tyrosinasegens dazu führt, daß nur noch Eumelanin in normaler Menge produziert wird, während das Phäomelanin völlig ausfällt. Die Tiere sind also grau statt braun. Bei Nagetieren, dem Nerz und der Katze gibt es einen als Himalaya oder Siamese bezeichneten Farbtyp, bei ihnen funktioniert die Thyrosinase abhängig von der Temperatur, deshalb ist der Körper heller als die kühleren Ohren, Nasenspitze, Schwanz und Pfoten.

Vollständiger Albinismus ist bei Primaten, Huftieren und Nagetieren weit verbreitet, doch die fehlende Tarnung, doch das durch Albinismus eingeschränkte Sehvermögen und die Lichtempfindlichkeit sind Selektionsnachteile. Bei Mäusen wurde eine deutlich verminderte Laufleistung und weniger Aktivität in offenem Gelände festgestellt.

Beim Pferd ist kein vollständiger Albinismus bekannt. Das Creme-Gen (Cr) führt zu unvollständigem Albinismus, die unter anderem für die Pferdefarben Buckskin, Palomino, Cremello und Perlino verantwortlich ist.

Die weit verbreitete Ansicht, daß helle Farbschläge mit verminderter Aggressivität einhergehen, wird durch den gemeinsamen Syntheseweg von Adrenalin und Dopachinon aus Dopa untermauert. Albino-Mäuse bringen ihre Jungtiere häufiger und zuverlässiger in das Nest zurück.

Der Tyrosinase Locus des Schweins wurde auf Chromosom 9 kartiert. Vollständiger Albinismus ist beim Schwein nicht bekannt. Auf Mutationen des C-Locus werden die schmutzig weiße Farbe des Mangalitza-Schweines (Allel ce) und die rezessiv vererbte Aufhellung der Farbe von gelb zu weiß und von rot zu cremefarben bei der Berkshire-Rasse (Allel cch) zurückgeführt.

Während beim Menschen 88 Mutationen des Tyrosinase-Gens beschrieben wurden, ist die Mutation des Allels c der Maus in allen Laborstämmen identisch.

Soziale Folgen von Albinismus für Tiere

Auch viele Tiere grenzen abweichend aussehende oder sich ungewöhnlich verhaltende Artgenossen aus wie wir das von Menschen kennen. Außerdem sind sie in freier Wildbahn oft nicht oder nur bedingt überlebensfähig, da sie keine Tarnfarben haben und sich deshalb nicht so gut auf die Lauer legen, sich verstecken oder Beute jagen können.

Tiere mit Albinismus sind oft Publikumslieblinge in Zoos. Albino-Tiere sind auch äußerst beliebt für Tierversuche, denn die pigmentlose Haut eignet sich angeblich besser dafür.

Andere Gründe für rosa Haut, blaue oder rote Augen weiße Haare oder weißes Fell

Leuzismus

Für die Leuzismus ist ein Gen verantwortlich, das das sich dominant auswirkt und im frühen Embryonalstadium zu einer mangelhaften Wanderung der Zellen aus der Neuralleiste in den Körper führt. Unter den Vorläuferzellen in der Neuralleiste sind neben den Schwannschen Zellen auch die Ganglionzellen des Hörnerven und die Melanozyten. Das Gen ist pleiotrop, d. h. es führt nicht nur zu einem weißen oder aufgehellten Fell, sondern beeinflußt auch die Augenfarbe und führt zu teilweiser oder völliger Taubheit. Auch die bekannten Weißen Tiger sind ein Fall von Leuzismus.

Scheckung

Wie wir das von Kühen kennen, können die meisten Tiere und auch Menschen gescheckt sein. Diese Eigenschaft entsteht meist ähnlich wie Leuzismus und ist ebenfalls gelegentlich mit Taubheit und Augenfehlern verbunden.

Vitiligo

Vitiligo oder die Weißfleckenkrankheit äußert sich durch weiße, pigmentfreie Hautflecken, die durch absterben der Melanozyten langsam größer werden.

Tuberöse Hirnsklerose oder Bourneville-Pringle-Syndrom

Die Tuberöse Hirnsklerose oder das Bourneville-Pringle-Syndrom ist eine autosomal-dominant vererbte Krankheit mit einer Häufigkeit von 1:20 000 - 1:40 000 in der Bevölkerung. Sie zeigt sich durch Adenoma sebaceum (viele kleine knötchenförmige Tumore auf der Gesichtshaut und unter den Fingernägeln), Epilepsie, zunehmende geistige Behinderung und weiße Flecken auf der Haut. Diese Flecken sind darauf zurückzuführen, daß in den Melanozyten die Melanosomen zwar angelegt werden aber nicht vollständig ausreifen und deshalb hell bleiben.

Phenylketonurie

Phenylketonurie ist eine erbliche Stoffwechselstörung die unbehandelt zu schwerer geistiger retardierung und auch zu heller Haut- Haar- und Augenfarbe führt.

Pferde: Schimmel

Schimmel haben im allgemeinen eine schwarze Haut aber weißes (eigentlich graues) Fell. Das heißt die Haut ist normal entwickelt, nur in die Haare wird kein Melanin eingelagert. Sie haben also weder Albinismus noch Leuzismus.

Sonstige Farbabweichungen

  • Bei Pflanzen führt der Mangel am grünen Farbstoff Chlorophyll zu Panaschierung.
  • Schwärzlinge mit Überproduktion von Melanin: Melanismus
  • Rothaarige: Es gibt zwei Arten von Melanin. In den Eumelanosomen wird das braunschwarze Eumelanin hergestellt, in den Phäomelanosomen das gelbrote Phäomelanin. Rothaarige produzieren hauptsächlich Phäomelanin während Menschen mit braunen bzw. schwarzen Haaren mehr Eumelanin herstellen. Eumelanin dient dem Schutz vor UV-Strahlung, während unbekannt ist, ob Phäomelanin eine nützliche Funktion hat.
  • Fellfarben der Pferde
  • Genetik der Pferdefarben

Verwandte Themen

NOAH Albinismus Selbsthilfegruppe e.V.

Commons: Albinos – Album mit Bildern, Videos und Audiodateien

Quellen

  • Aleksandra Lipka; 2004 ; Albinismus: Mutationssuche im TRP-1-Gen; Inauguraldissertation zur Erlangung der Doktorwürde der Universität zu Lübeck
  • P. M. Lund; Volume 32, Number 2 / March April 2005, S. 168 - 173; Oculocutaneous albinism in southern Africa: Population structure, health and genetic care; Annals of Human Biology
  • Petra Keller; 1997; Untersuchungen zur Entwicklung der frühen akustisch evozierten Potentiale (FAEP) bei der Katze für den Einsatz in der Grundlagenforschung und zur klinischen Anwendung; INAUGURAL-DISSERTATION zur Erlangung des Grades eines DOCTOR MEDICINAE VETERINARIAE durch die Tierärztliche Hochschule Hannover
  • J. Wolf, C. Jacobi, H. Breer und A. Grau; March, 2002; Medizinische Klinik, Issue Volume 97, Number 3;Volume 77, Number 2, S. 148-157 / February, 2006; Das Chediak-Higashi-Syndrom; Der Nervenarzt; Berlin, Heidelberg: Springer
  • Heinrich Burkhardt, Bettina Jung, Steffen J. Diehl, Walter Back, Rainer Gladisch; March, 2002; Medizinische Klinik, Issue Volume 97, Number 3,S. 165-169; Ungewöhnliche Ursache einer Lungenfibrose bei einer 71-jährigen Patientin
  • Barbara Käsmann-Kellner, Thorsten Schäfer, Christof M. Krick, Klaus W. Ruprecht, Wolfgang Reith, Bernd Ludwig Schmitz; Klin Monatsbl Augenheilkd 2003; 220: 334-344; Anatomische Unterschiede der Nervi optici, des Chiasmas und der Tractus optici bei normal- und hypopigmentierten Personen: eine standardisierte MRI- und fMRI-Untersuchung
  • Charlotte Jaeger und Barrie Jay; Volume 56, Number 3, S. 299-304, Februar 1981; Human Genetics; X-linked ocular albinism; Berlin, Heidelberg: Springer
  • P. Habermehl, S. Althoff, M. Knuf1, J.-H. Höpner; Klin Padiatr 2003; 215: 82-85; Griscelli-Syndrom: ein Fallbericht; Thieme-connect
  • Birgit Lorenz, Markus Preising; Ulf Kretschmann; Deutsches Ärzteblatt 98, Ausgabe 51-52 vom 24.12.2001, Seite A-3445 / B-2902 / C-2698; Molekulare und klinische Ophthalmogenetik; Deutscher Ärzte-Verlag
  • Björn Chapuy; 2005; Analyse der putativen AP-3-Funktion für die Vesikelbildung am Trans-Golgi-Netzwerk. INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Medizinischen Fakultät; Georg-August-Universität Göttingen
  • W. Tilgen; Archives of Dermatological Research: Volume 248, Number 1, S.13-27 / March, 1973; Zur Ultrastruktur der sogenannten White leaf-shaped macules bei der tuberösen Hirnsklerose Bourneville-Pringle; Berlin, Heidelberg: Springer, ISSN 0340-3696 (Print) 1432-069X (Online)
  • Dröscher, Vitus B.; 1989; Weiße Löwen müssen sterben. Spielregeln der Macht im Tierreich; Hamburg: Rasch und Röhring Verlag; Mobbing: S.212-244: "Tötet den Außenseiter!"
  • Eibl-Eibesfeld; 1986; Die Biologie des menschlichen Verhaltens; München, Zürich: Piper; Mobbing: "Bewahrung der Gruppenidentät" S. 409-417