Linearkombination

Begriff der Mathematik
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 19. Januar 2007 um 23:33 Uhr durch Sbeyer (Diskussion | Beiträge). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Eine Linearkombination von endlich vielen Elementen einer Menge M ist die Summe von beliebigen Vielfachen dieser Elemente. Um die Vielfachen berechnen zu können, sind Faktoren zu wählen, mit denen die Elemente multipliziert werden. Diese Faktoren nennt man Koeffizienten der Linearkombination. Diese sind zum Beispiel reelle oder komplexe Zahlen.

Allgemeine Form

 

oder kürzer geschrieben:

 

Spezialfälle

  • Sind die Koeffizienten   der Linearkombination alle größer oder gleich null so spricht man von einer konischen Linearkombination.
  • Sind die Koeffizienten der Linearkombination alle echt größer als null, so spricht man von einer Positivkombination.
  • Ist die Summe der Koeffizienten 1 so handelt es sich um eine Affinkombination
  • Eine konische Affinkombination, bei der also die Koeffizienten größer oder gleich 0 sind und in der Summe 1 ergeben, heißt Konvexkombination.

Allgemeines

Um die Linearkombination aus Elementen einer Menge bilden zu können, muss definiert sein, wie Vielfache von ihnen berechnet und wie solche Vielfachen aufsummiert werden können. Dies ist beispielsweise bei Elementen eines Vektorraumes gegeben.

In einem Vektorraum ist die Linearkombination von Vektoren mit Koeffizienten aus dem Körper des Vektorraums wieder ein Element des Vektorraums. Lassen sich alle Elemente des Vektorraums als Linearkombination aus einer Menge M darstellen, ist M ein Erzeugendensystem des Vektorraums. Die Menge aller Linearkombinationen einer Menge von Vektoren wird lineare Hülle genannt.

Linearkombinationen, deren Koeffizienten nicht beliebige reelle oder komplexe Zahlen, sondern ganze Zahlen sind (man spricht dann auch von einer ganzzahligen Linearkombination), spielen beim erweiterten euklidischen Algorithmus eine zentrale Rolle; er liefert eine Darstellung des größten gemeinsamen Teilers zweier ganzer Zahlen   als Linearkombination von   und  :