Das optische Konzept der Gaußstrahlen (auch Gaußsche Bündel genannt) verbindet Methoden der Strahlen- und Wellenoptik zur Beschreibung der Lichtausbreitung. Er ist eine Lösung der paraxial genäherten Helmholtz-Gleichung. Ein Gaußstrahl zeichnet sich durch ein transversales Profil gemäß einer Gaußkurve (die Amplitude des elektromagnetischen Feldes nimmt mit dem Abstand zur Ausbreitungsachse exponentiell ab) und ein longitudinales Lorentzprofil (er ist an einer Stelle, der Taille, fokussiert und "zerläuft" mit zunehmendem Abstand zu ihr) aus.
Gaußstrahlen beschreiben besonders gut die Lichtemission vieler Laser, aber sie lassen sich auch in vielen anderen Situationen elektromagnetischer Strahlung einsetzen. Besonders interessant sind sie, da sie Phasenbetrachtungen wie die Wellenoptik erlauben, aber einfachen Rechenmethoden der Strahlenoptik gehorchen.
Formel
Für die mathematische Beschreibung eines Gaußstrahls verwendet man Zylinderkoordinaten, setzt die Ausbreitungsrichtung als z-Achse und die Strahltaille als z=0. Dann ist die komplexe Feldamplitude (die Phase berücksichtigend) in Abhängigkeit des Abstands r zur Achse und der Entfernung z zur Taille:
Die zu dieser Feldstärke gehörende Intensität ist dann:
Dabei sind die imaginäre Einheit, die Wellenzahl und bzw. die Werte an der Stelle . Die Parameterfunktionen W(z), R(z) und ζ(z) werden im folgenden definiert und beschreiben die Geometrie des Gaußstrahles.
Interpretation der Parameter
Transversales Profil
Wie bereits erwähnt, hat der Gaußstrahl ein transversales Profil gemäß einer Gaußkurve. Als Strahlradius definiert man den Abstand zur z-Achse, an dem die Amplitude auf 1/e (ca. 36 %) gefallen ist. Der minimale Strahlradius, also bei , der Taille, wird genannt, und in Abhängigkeit des Abstandes z entlang der Achse verhält sich der Radius dann im Nahfeld gemäß
- mit
Axiales Profil
Der Parameter
- heißt Rayleigh-Länge. In diesem Abstand gilt
Der Abstand zwischen dem linken und rechten Punkt mit wird bi- oder konfokaler Parameter genannt:
Damit ist , die Amplitude also an einer bestimmten z-Koordinate auf das -fache abgefallen. Dies entspricht einem Lorentz-Profil.
Krümmung
Die Exponentialfunktionen mit imaginären Exponenten bestimmen die Phasenlage der Welle bei . Dabei bestimmt der Parameter R(z) anschaulich, wie stark die Phase an achsfernen Punkten verzögert ist, also, wie stark die Wellenfronten gekrümmt sind, und heißt deshalb Krümmungsradius. Er berechnet sich zu
Divergenz
Betrachtet man den Verlauf von für , nähert er sich einer Geraden - dies zeigt die Verbindung zur Strahlenoptik auf. Wie stark der Gaußstrahl verläuft, sich also transversal ausdehnt, lässt sich dann durch den Winkel zwischen dieser Geraden und der z-Achse angeben, dies nennt man die Divergenz:
Diese Beziehung führt zu dem Effekt, dass die Divergenz bei starker Fokussierung größer wird: ist die Strahltaille schmal, verläuft der Strahl in großen Entfernungen stark. Man muss also einen Kompromiss aus Fokussierung und Reichweite findet.
Gouy-Phase
In der Wellenphase taucht auch ein Term auf, der die Gouy-Phase des Gaußstrahls genannt wird:
Diese liefert einen Phasenunterschied von beim Übergang von zu , dies entspricht dem "Umklappen" der klassischen Strahlenoptik im Fokus.
Matrizenoptik
Der große Vorteil des Gaußstrahlen-Modells besteht darin, dass das Kalkül der Matrizenoptik sich vollständig auf sie übertragen lässt. Definiert man den Parameter , so wirkt die ABCD-Matrix eines optischen Elementes auf ihn gemäß
Literatur
- D. Meschede: Optik, Licht und Laser. Teubner-Verlag, Leipzig-Stuttgart 2005
- E. Hecht: Optik. Oldenbourg-Verlag, München-Wien 2005