Diskussion:Kondition (Mathematik)

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 30. Oktober 2006 um 03:00 Uhr durch 80.136.70.140 (Diskussion) (Gut konditioniertes Problem??). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Verfälschte Eingangsdaten

Die Bedeutung der Kondition wird offensichtlich, wenn man sich den Unterschied zwischen den realen Eingangsdaten (beispielsweise reelle Zahlen) und den tatsächlichen Eingangsdaten in Form von Maschinenzahlen klar macht. Es liegen also einem Computerprogramm stets bereits verfälschte Daten vor.

Stimmt so natürlich nicht. Meinen tut der Autor den Fall von realen Zahlen als Eingangsdaten, da gibt es naturgemäss Fehler in den meisten Fällen.

Ausserdem vermisse ich den Artikel zur Intervallarithmetik, wo Fehlergrenzen mitgeführt werden. --Marc van Woerkom 18:05, 20. Sep 2004 (CEST)

Nein, die Aussage ist korrekt. Nicht jede reele Zahl kann durch eine Maschinenzahl exakt dargestellt werden. Dadurch kommt es schon bei der Eingabe in den Computer zu Fehlern.--217.232.225.81 16:03, 29. Nov 2004 (CET)

Ihr habt beide Recht: Ich habe damals wirklich an real-vorkommende Zahlen gedacht. Allerdings sind die einfachsten derartigen Zahlen, die numerisch ein Problem darstellen die reellen Zahlen. Diese kann man so einfach selten (also in der Mehrheit unter allen reellen Zahlen) sinnvoll im Computer speichern bzw. bearbeiten und daher wird in der Praxis eine Annäherung durch Maschinenzahlen (als Gleitkommazahl z. B. double) vorgenommen. Es gibt aber auch Software (beispielsweise Algebra-Programme wie maple usw.) die reelle Zahlen exakter Speichern: Rationale Zahlen (als Teil der reellen) können durch Zähler und Nenner jeweils als Integer dargestellt recht präzise verwendet werden - das einzige Problem stellen hierbei ggf. zu große Zahlen und damit der Speicher dar. Auch Wurzeln (ggf. sogar komplexe) kann man durch ihr zugehöriges Polynom sinnvoll speichern. Die Frage ist aber in beiden Fällen, wie damit gerechnet wird; auf CPU-Ebene ist dies kaum (oder gar nicht?) möglich. Daher findet hierbei die Rundung statt.
Eine andere Möglichkeit verfälschte Eingangsdaten zur erhalten stellen natürlich Messungen dar. Hierbei wird allerdings der physikalischen Messung der Fehler in die Schuhe geschoben und dies passiert damit einen Schritt früher. Ich glaube aber, das diese Ausführungen in dem Artikel über die Kondition zu weit führen. Vielleicht wäre das etwas für den noch recht schmächtigen Artikel Rundungsfehler. --Anonym 11:09, 1. Dez 2004 (CET)

[Conditionszahl(englisch)]

Kondition einer linearen Abbildung

Kann es sein, dass bei der Berechnung der Kondition einer linearen Abbildung vergessen wurde zu fordern, dass A normal ist? Zum Beispiel erfolgt auch in der englischen Version des Artikels der Übergang auf den betragsgrößten/-kleinsten Eigenwert nur für normale Matrizen. Also sollte man vielleicht   durch   ersetzen. Saraedum 16:48, 6. Feb 2006 (CET)

Auf jeden Fall das kann man sich anhand   klarmachen. Die Eigenwerte sind 1 die Kondition auf jeden Fall nicht --Mathemaduenn 11:02, 18. Aug 2006 (CEST)

Gut konditioniertes Problem??

Ich bin jetzt etwas verunsichert. In Numerik habe ich gelernt, dass bei einem "gut konditionierten Problem" alle Kond.zahlen sehr viel kleiner als eins sein sollen. Hier im Artikel steht aber, dass für ein "g. k. P." die Kond.zahl *gleich* eins sein soll.

Wer weiß Rat?

In meinem Numerik-Buch (Stoer: Numerische Mathematik 1 / Springer-Verlag) steht auch, dass bei großen relativen Konditionszahlen ein schlecht konditioniertes, und bei kleinen relativen Konditionszahlen ein gut konditioniertes Problem vorliegt. Bei welchen Größenordnungen ein Problem nun gut oder schlecht konditioniert ist kann ich auch nicht sagen, auf jeden Fall sind die Fälle "ungefähr 1" und "groß" etwas schwammig.