Diskussion:Interpolation (Mathematik)

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 25. August 2004 um 17:20 Uhr durch JunK~dewiki (Diskussion | Beiträge) (Interpolation und Approximation). Sie kann sich erheblich von der aktuellen Version unterscheiden.

IMHO ist die gebräuchlichste Verwendung von "Interpolation" im Bereich der numerischen Mathematik zu finden. Auch google liefert in allererster Linie Ergebnisse zu diesem Bereich. Hatte mir das schon mal vorgenommen zu schreiben, bin aber über folgendes nicht hinausgekommen:

Die Interpolation ist ein Themengebiet der numerischen Mathematik.
Bei der Interpolation wird eine Funktion (die Interpolierende) gesucht, die gegebene Daten (die sog. Stützstellen) interpoliert, dh. die eine approximative Lösung der ursprünglichen Funktion liefert. Somit lassen sich Funktionswerte bestimmen die zwischen den Stützstellen liegen.

Anwendungsgebiete der Interpolation finden sich in allen naturwissenschaftlichen Fächern.

Verfahren der Interpolation

--ecki 15:49, 6. Jul 2003 (CEST)

Interpolation und Approximation

Offenbar gibt es eine gewisse Begriffsverwirrung zwischen "Interpolation" und "Approximation".

@DaTroll: Wenn Interpolation ein Spezialfall von Approximation ist, warum schreibst du das dann nicht? "Die Hoffnung ist hierbei, dass die Interpolante insgesamt eine gute Approximation an die Funktion darstellt". Welche Funktion? Diese Funktion ist a priori unbekannt, also gibt es auch kein Kriterium für eine "gute" Approximation. --JunK 16:27, 2. Aug 2004 (CEST)

Die Funktion die vorher genannt wurde. Die Daten kommen ja irgendwoher und fallen nicht vom Himmel. Hinter den Daten steht also irgendeine Funktion, die ich nicht kenne, aber gerne kennen wuerde. Ich interpoliere nicht, um die Daten represaentieren, die ich schon habe (die zu interpolierenden Funktionswerte), sondern um eine Approximation an die Daten zu kriegen, die ich noch nicht habe. Dass es kein Kriterium fuer eine gute Approximation gibt, stimmt so nicht: In Abhaengigkeit von der unbekannten Funktion und den Ansatzfunktionen lassen sich quantitative und qualitative Fehlerabschaetzungen fuer den Interpolationsfehler herleiten. Bei Polynominterpolation sieht man dann auch, dass diese meist nicht besonders gut sind, weswegen ja Spline-Interpolation das Mittel der Praxis ist. Viele Gruesse --DaTroll 16:36, 2. Aug 2004 (CEST)
Leider ist die Situation in der Praxis nicht so einfach wie in den Lehrbüchern. Die Daten können sehr wohl "vom Himmel fallen". Die Stützstellen in den Bildern habe ich frei erfunden, es steht keine Funktion dahinter (genausogut hätte ich die Lottozahlen von letzten Mittwoch nehmen können, das macht für die Interpolation keinen Unterschied). Und sofern ich keine a-priori-Information über die "Funktion die dahintersteht" reinstecke, kann ich die Güte der Interpolation nicht beurteilen. Meistens verwendet man dazu Stetigkeitsanforderungen oder das Abtasttheorem, daher ist die Spline-Interpolation so populär. Das garantiert mir aber nicht, dass die "Funktion, die dahintersteht" (falls es sie überhaupt gibt) nicht wirklich ein Polynom x-ten Grades ist. In Abhängigkeit von einer unbekannten Funktion kann ich gar nichts herleiten.
Übrigens bezog sich mein Nebensatz über die Approximation, den du so geflissentlich gelöscht hast, auf die Stützstellen.
Ich bin die nächsten 2 Wochen im Urlaub, anschließend werde ich ein Beispiel hinzufügen. Vielleicht wird die ganze Sache dann klarer. Grüße, --JunK 23:31, 3. Aug 2004 (CEST)
Nein, da muss ich Dir widersprechen: Daten fallen nicht vom Himmel. Sie kommen irgendwoher. Eine Messung ist nichts anderes als eine Funktionsauswertung (nur dass die Funktion unbekannt ist bzw. nicht analytisch verfuegbar). Eigenschaften der Funktion bzw. der zugrundeliegenden Gleichungen liegen aber immer vor. Ist sie stetig? Positiv? Differenzierbar? Kann man den Wertebereich einschraenken? Und selbstverstaendlich kann man dann auch die Approximationsguete der Interpolante bewerten.
Dein Nebensatz ueber die Approximation war halt einfach falsch. Interpolation ist nichts anders als die offensichtlichste (und haeufig halt auch nicht besonders gute) Art mit Hilfe eines Satzes von Daten, eine Funktion zu approximieren. Eine Approximation der Stuetzstellen muss ich nicht vornehmen: ich kenne sie doch schon. Es geht also nur darum, die Zwischenraeume irgendwie sinnvoll auszufuellen. Viele gruesse --DaTroll 13:10, 4. Aug 2004 (CEST)

Bin wieder da!! Also, ich glaube wir reden aneinander vorbei. Möglicherweise liegt das auch daran, dass der mathematische Sprachgebrauch bei "interpolieren" und "approximieren" etwas verwirrend ist. Ich halte mal folgende Fakten fest:

  1. Gegeben ist ein Satz von Punkten ("Daten"). Woher diese Daten stammen, ist für das mathematische Verfahren völlig ohne Belang.
  2. Durch diese Punkte will ich eine Kurve legen.
  3. Wenn die Kurve exakt durch die Punkte geht, spricht von von Interpolation der Stützstellen. Klingt komisch, ist aber so. Wenn die Kurve nur nahe an die Punkte herankommt, spricht man von Approximation der Stützstellen. Wenn du mir nicht glaubst, kannst du in jedem beliebigen Buch über numerische Mathematik nachschauen.
  4. Was zwischen den Stützstellen passiert, ist für das mathematische Verfahren ebenfalls ohne Belang.

Nun gibt es neben der rein mathematischen Sichtweise auch noch die Sichtweise des Anwenders. Für die meisten Anwendungen möchte man eine glatte, differenzierbare usw. Kurve haben. Daher sind einige Interpolationsverfahren für manche Anwendungen besser geeignet als andere. Was nützt mir die schönste B-Spline-Interpolation, wenn meine unbekannte Funktion nun tatsächlich ein Polynom 9. Grades ist? In der Oberflächenmesstechnik z.B. gibt es raue Oberflächen, die sind im mikroskopischen Bereich von Natur aus nicht glatt und schon gar nicht analytisch. Wenn ich nun irgendwelche Messpunkte interpolieren will, kann ich nie mit Sicherheit sagen, was zwischen diesen Messpunkten passiert. Wenn ich plötzlich einen Peak entdecke: Sieht das Werkstück tatsächlich so aus oder ist es nur ein Artefakt meines Interpolationsverfahrens? Ich muss Annahmen über die unbekannte Funktion treffen, wenn ich die Interpolationsgüte beurteilen will, sonst habe ich keine Chance.

Grüße, --JunK 17:19, 23. Aug 2004 (CEST)

Ich hoffe mal, daß der Urlaub nett war. In der Zwischenzeit habe ich meine Einleitung nochmal überarbeitet. Vielleicht gefällt es Dir jetzt besser. Ansonsten kann ich nur sagen: je länger ich lese was Du da schreibst, desto weniger verstehe ich, was Du eigentlich sagen willst. Naja, mal zu den letzten Sachen: Daß eine Interpolationsfunktion die Stützstellen interpoliert und nicht approximiert, braucht nicht näher erwähnt zu werden. Ich schreibe ja auch von Approximation von Funktionen.
Naürlich gibt es extreme Fällen, in denen über die Approximationsgüte nichts gesagt werden kann. Dann ist aber auch die Interpolation nicht besonders aussagekräftig. Was ist also Dein Punkt? --DaTroll 21:40, 23. Aug 2004 (CEST)
Mein Punkt ist, dass ich mir eine mathematisch saubere Definition wünsche. Was ist daran so schwer zu verstehen? Dass eine Interpolationsfunktion die Stützstellen interpoliert und nicht approximiert, sollte deshalb erwähnt werden, weil das ja genau der Unterschied zwischen Interpolation und Approximation ist. Das "Extrembeispiel" habe ich gebracht, weil dein Argument war, dass man in jedem Fall etwas über die Approximationsgüte aussagen kann (siehe oben). Und zuletzt: Der Satz "Die Hoffnung ist hierbei, dass die Interpolante insgesamt eine gute Approximation an die den Daten zugrunde liegende unbekannte Funktion darstellt." gefällt mir deshalb nicht so gut, weil er genau das impliziert. Grüße, --JunK 17:55, 24. Aug 2004 (CEST)
Die Definition wie sie jetzt da steht ist mathematisch sauber. Dass eine Interpolationsfunktion die Daten interpoliert und nicht approximiert ist eine Tautologie. Das muss man nicht extra erwaehnen. Viel wichtiger ist, dass ein Interpolationsverfahren immer ein Verfahren fuer Funktionsapproximation ist. Um mich zu wiederholen: der Sinn des ganzen ist doch nicht, die Daten die ich schon habe darzustellen, sondern das, was ich noch nicht habe. Oder, auch eine haeufige Anwendung, um eine gegebene Funktion vereinfacht darzustellen.
Um nochmal auf Dein Beispiel zurueckzukehren: nach Nachdenken muss ich meine Aussage zuruecknehmen. Klar kann man was sagen: Die gesuchte Funktion ist stetig und beschraenkt. Entsprechend kann man bewerten, ob die Interpolante fuer das Problem was man im Hinterkopf hat (es ist ja immer die Frage, was man mit der Interpolante eigentlich machen will) eine sinnvolle Approximation ist. Oder ob man vielleicht doch lieber Least Squares oder etwas anderes nehmen sollte. --DaTroll 10:54, 25. Aug 2004 (CEST)
Wenn ist sage: "Die Funktion interpoliert die Daten", so ist das nicht das gleiche als wenn ich sage "Die Funktion approximiert die Daten". Die Interpolationsbedingung ist nämlich schärfer als die Approximationsbedingung (z.B. bei Least Squares). Ich habe nie behauptet, dass ich "die Daten darstellen will, die ich schon habe". Warum wiederholst du das so hartnäckig? Ich glaube inzwischen, du willst nicht wirklich Approximation sagen, sondern Modellierung. Können wir uns auf diesen Begriff einigen? Ich habe dem Artikel eine "Einführung" vorangestellt, die all das hier zusammenfasst. Gruß, --JunK 17:20, 25. Aug 2004 (CEST)