Oberflächenchemie

Nanowissenschaft, Teilgebiet der physikalischen Chemie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 31. Juli 2006 um 14:51 Uhr durch Superplus (Diskussion | Beiträge) (Oberflächensensitive Methoden). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Oberflächenchemie (engl. surface chemistry, surface science) ist ein wissenschaftliches Grenzgebiet aus Festkörperphysik und Chemie, bei dem die chemischen und strukturellen Vorgänge untersucht werden, die sich an Grenzflächen, meist fest-flüssig oder fest-gasförmig, abspielen. Dabei werden oberflächensensitive analytische Methoden angewendet. Als Oberfläche (engl.: surface) ist dabei der Bereich eines Festkörpers definiert, in dem sich die physikalischen und chemischen Eigenschaften vom Rest (engl.: bulk) unterscheiden.

Anwendungsgebiete

Oberflächenanalytische Methoden werden in der Industrie und in der Grundlagenforschung eingesetzt.

Beispiele für Fragestellung

Oberflächensensitive Methoden

Um die Vorgänge an Grenzflächen untersuchen zu können, müssen Methoden verwendet werden, die nur Prozesse in dem Bereich einer Probe "sehen", der sich von in seinen Eigenschaften vom restlichen Festkörper unterscheidet. Dazu werden die Wechselwirkungen von folgenden Wellen/Teilchen mit Materie genutzt:

Strahlung/Teilchen mittlere freie Weglänge im Festkörper/Gas Beispiele
Elektronen klein (Coulomb-Wechselwirkung), abh. von kinetische Energie siehe "Universelle Kurve"
Photonen gross keine Coulomb-Wechselwirkung) UV-Strahlung, Infrarotstrahlung, Röntgenstrahlung
neutrale Teilchen gross (keine Coulomb-Wechselwirkung) Neutronen
Ionen klein (Coulomb-Wechselwirkung)
magnetische Felder gross
Wärme gross

Die mittleren freien Weglängen von geladenen Teilchen sind auf Grund von Coulomb-Wechselwirkungen i.a. viel kleiner als die von neutralen. Ein weiterer starker Einfluss auf ist die kinetische Energie der Teilchen; in bestimmten Energiebereichen können Prozesse angeregt werden, was die mittlere freie Weglänge verringert. Entscheidend für die Oberflächensensitivität einer Methode ist, dass entweder das mit der Probe wechselwirkende oder das detektierte Teilchen oder Welle eine geringe mittlere freie Weglänge in der Materie besitzt. Deshalb ist auch für viele Methoden ist ein Ultrahochvakuum nötig. Die gewählte Methode hängt dabei von der Fragestellung ab. Die folgende Übersicht soll nur einen Überblick geben. Für mehrere Methoden existieren auch verschiedene Ortsauflösende Techniken. Für weitere Beschreibung siehe deren Artikel. Jede der Methoden hat Vor- und Nachteile, die beim Experiment berücksicht werden müssen.

Scanning Probe Microscopy (SPM)

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Rastertunnelmikroskop (STM) Elektronische Zustandsdichte an der Oberfläche im Ortsraum, Überstrukturen Elektronen Tunnelstrom/z-Position der Spitze Tunneleffekt
Rasterkraftmikroskop (AFM) Oberflächenstruktur im Ortsraum Schwingende Spitze Ablenkung eines Laserstrahls (Frequenz-, Phasen- und Amplitudenänderung) Van-der-Waals-Wechselwirkung mit Probe
Nahfeldmikroskopie (SNOM)
Photoemissions-Elektronenmikroskopie (PEEM)


Elektronenmikroskopie

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Transmissions-Elektronen-Mikroskopie (TEM) Oberflächenstruktur im Ortsraum, Netzebenen Elektronen Elektronen Transmission von Elektronen durch eine dünne Probe
Raster-Elektronen-Mikroskopie (SEM) Oberflächenstruktur im Ortsraum, Kristallstruktur von Kristalliten auf der Oberfläche Elektronen Elektronen Abrastern der Probe mit Elektronenstrahl
Raster-Transmissions-Elektronen-Mikroskopie (STEM) Elektronen Elektronen
Röntgenmikroanalyse (XRMA)
Elektronen Energieverlust-Spektroskopie (EELS) Spektrum Elektronen Elektronen Anregung von Prozessen im Festkörper: Plasmonenanregung, Ionisation


Elektronenspektroskopie

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Röntgen-Photoelektronen-Spektroskopie (XPS) Oxidationszustand und Konzentration von Elementen im Oberflächenbereich Röntgen-Photonen Photo-Elektronen Photoelektrischer Effekt
Auger-Elektronen-Spektroskopie (AES) Oxidationszustand und Konzentration von Elementen im Oberflächenbereich Röntgen-Photonen oder Elektronen Auger-Elektronen Auger-Effekt
Ultraviolet-Photoelektronen-Spektroskopie (UPS) Photonen im UV-Bereich Photo-Elektronen Photoelektrischer Effekt
Metastabilen-Einschlag-Elektronenspektroskopie (MIES)


Beugung

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Beugung niederenergetischer Elektronen (LEED) Oberflächenstruktur im reziproken Raum, Überstrukturen, 2-d-Fernordnung muss vorhanden sein niederenergetische Elektronen gebeugte Elektronen Beugung
Röntgenbeugung (XRD) Gitterstruktur der gesamten Festkörpers im reziproken Raum, 3-d-Fernordnung muss vorhanden sein Röntgen-Photonen gebeugte Röntgenstrahlung Beugung
MEED Monolagen-Wachstum in Abhängigkeit der Zeit, Fernordnung bei voller Monolage muss vorhanden sein Elektronen gebeugte Elektronen Beugung
Reflection high energy electron diffraction (RHEED) in-situ Strukturanaylse während Deposition, Fernordnung muss vorhanden sein Elektronen Elektronen Beugung mit kleinem Glanzwinkel

Schwingungs-Spektroskopie

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Infrarotspektroskopie (IR) Spektrum, Schwingungsmoden von Adsorbaten (oft Kohlenmonoxid als Sonde) Infrarot-Photonen Infrarot-Photonen Schwingungsanregung von IR-aktiven Banden
Ramanspektroskopie Spektrum, Schwingungsmoden von Adsorbaten Infrarot-Photonen Infrarot-Photonen Schwingungsanregung von raman-aktiven Banden


Ionen-Spektroskopie

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Ionen-Streu-Spektroskopie (ISS=LEIS) Molare Masse der Oberflächenatome auf der äußersten Lage (qualitativ) niederenergetische Ionen (oft positive Edelgas- oder Alkalimetallionen) gestreute Ionen mit einem Massenspektrometer Elastische Streuung von Ionen an der Oberfläche, Energie- und Impulserhaltung
Sekundär-Ionen-Massenspektrometrie (SIMS) Molare Masse der Atome im Tiefenprofil der Oberfläche (quantitativ) Ionen (oft positive Edelgas- oder Metallionen) Cluster und Fragmente der Oberfläche, gestreute Ionen mit einem Massenspektrometer Sputtern der Oberfläche
Rutherford Backscattering Spectrometry (RBS) Zusammensetzung der Oberfläche hochenergetische Helium-Ionen
Nukleare Reaktions-Analyse (NRA) Zusammensetzung der Oberfläche hochenergetische Ionen oder Neutronen Zerfallsprodukte von Kernreaktionen Kernreaktionen
Sekundär-Neutralteilchen-Massenspektrometrie (SNMS)

Feldinduzierte Mikroskopie

Methode Erhaltene Informationen eingesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
Feldemissionsmikroskopie (FEM) Abbildung der Struktur von Spitzen, keine atomate Auflösung elektrisches Feld ionisiert Spitzenatome emitierte Elektronen aus der Spitze auf Fluoreszenzschirm Ionisation, Tunneleffekt
Feldionenmikroskopie (FEM) Abbildung der Struktur von Spitzen, atomate Auflösung elektrisches Feld, Bildgas Bildgas mit Fluoreszenzschirm Ionisation des Bildgases, Tunneleffekt
Felddesorption/Feldverdampfung Abbildung der Struktur von Spitzen elektrisches Feld Adatome/Spitzenatome Desorption von Adatomen der Spitze/Verdampfung von Spitzenmaterial
Feldionenmassenspektrometrie Zusammensetzung von Spitzen elektrisches Feld, Bildgas Molare Masse von Spitzenatomen durch Time-of-flight-Massenspektrometer (TOF) Desorption von Atomen der Spitze, Unterschiedliche Flugzeit bei unterschiedlichen Massen im TOF
Methode Erhaltene Informationen engesetztes Teilchen/Welle detektierte Größe/Teilchen/Welle ausgenutzter Effekt
(Surface) Extended X-Ray absorption Fine Structure ((S)EXAFS=XANES) Informationen über Nahordnung durchstimmbere Röntgen-Photonen (Synchrotronstrahlung) Röntgen-Photonen Interferenz von ursprünglichen Photoelektronen und an Nachbaratomen gestreuten Photoelektronen führen zu anderer Wahrscheinlichkeit für Photoelektrischen Effekt
Massenspektrometrie (MS) Massen der detektierten Teilchen Ionisation von Teilchen, Trennung im elektrischen Feld

Die "Big Four"

Die vier am häufigsten verwendeten Verfahren, die sogenannten "Big Four" sind XPS, AES, SIMS und RBS.

Siehe auch