Dies ist eine Testseite, um Inhalte die in einem andern Wiki leider (noch) nicht realisierbarsind auszuprobieren.
Bitte nicht löschen, da hier viel Arbeit drin steckt!
Lienare Algebra & Vektoren
P
r
:
Ω
→
[
0
,
1
]
{\displaystyle Pr:\Omega \rightarrow [0,1]}
∑
a
∈
A
P
r
(
a
)
=
1
{\displaystyle \sum _{a\in A}Pr(a)=1}
A
⊆
Ω
{\displaystyle A\subseteq \Omega }
P
r
:
P
(
Ω
)
→
[
0
,
1
]
{\displaystyle Pr:{\mathcal {P}}(\Omega )\rightarrow [0,1]}
P
r
(
A
)
=
∑
a
∈
A
P
r
(
a
)
{\displaystyle Pr(A)=\sum _{a\in A}Pr(a)}
P
(
Ω
)
=
2
Ω
{\displaystyle P(\Omega )=2^{\Omega }}
1
6
{\displaystyle {\frac {1}{6}}}
¬
{\displaystyle \neg }
∪
{\displaystyle \cup }
∈
{\displaystyle \in }
∩
{\displaystyle \cap }
⊆
{\displaystyle \subseteq }
∅
{\displaystyle \varnothing }
P
r
(
B
)
=
(
5
3
)
⋅
1
2
5
{\displaystyle Pr(B)={5 \choose 3}\cdot {\frac {1}{2^{5}}}}
P
r
(
A
)
=
5
6
k
−
1
⋅
1
6
=
5
k
−
1
6
k
{\displaystyle Pr(A)={5 \over 6}^{k-1}\cdot {1 \over 6}={5^{k-1} \over 6^{k}}}
A
∈
F
⇒
A
¯
∈
F
{\displaystyle A\in {\mathcal {F}}\Rightarrow {\overline {A}}\in {\mathcal {F}}}
A
1
,
A
2
,
.
.
.
∈
F
⇒
⋃
i
=
1
∞
A
i
∈
F
{\displaystyle A_{1},A_{2},...\in {\mathcal {F}}\Rightarrow \bigcup _{i=1}^{\infty }A_{i}\in {\mathcal {F}}}
A
¯
{\displaystyle {\overline {A}}}
A
i
∈
F
{\displaystyle A_{i}\in {\mathcal {F}}}
P
r
(
⋃
i
=
1
∞
A
i
)
=
∑
i
=
1
∞
P
r
(
A
i
)
{\displaystyle Pr\left(\bigcup _{i=1}^{\infty }A_{i}\right)=\sum _{i=1}^{\infty }Pr(A_{i})}
F
⊆
P
(
Ω
)
{\displaystyle {\mathcal {F}}\subseteq P(\Omega )}
P
r
(
A
|
B
)
=
P
r
(
A
∩
B
)
P
r
(
B
)
{\displaystyle Pr(A|B)={\frac {Pr(A\cap B)}{Pr(B)}}}
P
r
(
A
)
=
∑
i
P
r
(
A
|
B
i
)
⋅
P
r
(
B
i
)
{\displaystyle Pr(A)=\sum _{i}Pr(A|B_{i})\cdot Pr(B_{i})}
E
(
X
)
=
∑
w
∈
Ω
X
(
w
)
⋅
P
r
(
w
)
{\displaystyle E(X)=\sum _{w\in \Omega }X(w)\cdot Pr({w})}
I
m
X
=
{
x
∈
R
|
∃
a
∈
Ω
X
(
a
)
=
x
}
{\displaystyle ImX=\{x\in R|\exists a\in \Omega \quad X(a)=x\}}
∀
x
∈
R
X
−
1
(
x
)
=
{
a
∈
Ω
|
x
(
a
)
=
x
}
∈
F
{\displaystyle \forall x\in R\quad X^{-1}(x)=\{a\in \Omega |x(a)=x\}\in {\mathcal {F}}}
E
(
X
)
=
∑
x
∈
I
m
(
X
)
x
⋅
P
r
(
X
−
1
(
x
)
)
{\displaystyle E(X)=\sum _{x\in Im(X)}x\cdot Pr(X^{-1}(x))}
X
−
1
(
T
)
∈
F
{\displaystyle X^{-1}(T)\in {\mathcal {F}}}
X
−
1
(
T
)
=
⋃
x
∈
(
T
∩
I
m
X
)
X
−
1
(
T
)
{\displaystyle X^{-1}(T)=\bigcup _{x\in (T\cap ImX)}X^{-1}(T)}
P
r
(
X
−
1
(
x
)
)
=
P
r
X
(
x
)
=
P
r
(
X
=
x
)
{\displaystyle Pr(X^{-1}(x))=Pr_{X}(x)=Pr(X=x)\ }
P
r
X
(
k
)
=
(
n
k
)
⋅
p
k
⋅
q
n
−
k
{\displaystyle Pr_{X}(k)={n \choose k}\cdot p^{k}\cdot q^{n-k}}
k
∈
{
0
,
1
,
.
.
.
,
n
}
{\displaystyle k\in \{0,1,...,n\}}
P
r
X
(
k
)
=
p
⋅
q
k
−
1
{\displaystyle Pr_{X}(k)=p\cdot q^{k-1}}
k
∈
N
+
{\displaystyle k\in \mathbb {N} ^{+}}
N
+
{\displaystyle \mathbb {N} ^{+}}
1
6
(
5
6
)
n
−
1
{\displaystyle {\frac {1}{6}}\left({\frac {5}{6}}\right)^{n-1}}
P
r
X
(
k
)
=
1
k
!
λ
k
e
−
λ
{\displaystyle Pr_{X}(k)={\frac {1}{k!}}\lambda ^{k}e^{-\lambda }}
{
a
∈
Ω
|
X
(
a
)
≤
x
}
∈
F
{\displaystyle \{a\in \Omega |X(a)\leq x\}\in {\mathcal {F}}}
F
X
(
x
)
=
P
r
(
{
a
∈
Ω
|
X
(
a
)
≤
x
}
)
=
P
r
(
X
≤
x
)
{\displaystyle F_{X}(x)=Pr(\{a\in \Omega |X(a)\leq x\})=Pr(X\leq x)}
F
X
(
x
)
=
∑
y
≤
x
P
r
X
(
y
)
{\displaystyle F_{X}(x)=\sum _{y\leq x}Pr_{X}(y)}
x
≤
y
⇒
F
(
x
)
≤
F
(
y
)
{\displaystyle x\leq y\Rightarrow F(x)\leq F(y)}
lim
x
→
−
∞
F
(
x
)
=
0
{\displaystyle \lim _{x\to -\infty }F(x)=0}
lim
x
→
∞
F
(
x
)
=
1
{\displaystyle \lim _{x\to \infty }F(x)=1}
∀
x
∈
R
lim
h
→
0
+
F
(
x
+
h
)
=
F
(
x
)
{\displaystyle \forall x\in \mathbb {R} \lim _{h\to 0+}F(x+h)=F(x)}
F
X
(
x
)
=
∫
−
∞
x
f
(
t
)
d
t
{\displaystyle F_{X}(x)=\int _{-\infty }^{x}f(t)\mathrm {d} t}
E
(
X
)
=
∑
x
∈
I
m
X
x
⋅
P
r
X
(
x
)
=
∑
x
∈
I
m
x
x
⋅
P
r
(
{
a
∈
Ω
|
X
(
a
)
=
x
}
)
{\displaystyle E(X)=\sum _{x\in \mathrm {Im} X}x\cdot Pr_{X}(x)=\sum _{x\in \mathrm {Im} x}x\cdot Pr(\{a\in \Omega |X(a)=x\})}
E
(
X
)
=
∫
−
∞
∞
x
⋅
f
(
x
)
d
x
{\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x}
X
=
X
1
+
X
2
+
X
3
+
.
.
.
+
X
n
{\displaystyle X=X_{1}+X_{2}+X_{3}+...+X_{n}\ }
E
(
X
)
=
E
(
X
1
)
+
E
(
X
2
)
+
E
(
X
3
)
+
.
.
.
+
E
(
X
n
)
=
n
⋅
p
{\displaystyle E(X)=E(X_{1})+E(X_{2})+E(X_{3})+...+E(X_{n})=n\cdot p}
P
r
X
(
k
)
=
(
e
−
p
)
k
−
1
⋅
p
=
q
k
−
1
⋅
p
{\displaystyle Pr_{X}(k)=(e-p)^{k-1}\cdot p=q^{k-1}\cdot p}
E
(
X
)
=
∑
k
=
1
∞
k
⋅
q
k
−
1
⋅
p
=
.
.
.
=
1
⋅
1
1
−
q
=
1
p
{\displaystyle E(X)=\sum _{k=1}^{\infty }k\cdot q^{k-1}\cdot p=...=1\cdot {\frac {1}{1-q}}={\frac {1}{p}}}
E
(
X
)
=
∑
k
=
0
∞
k
⋅
1
k
!
⋅
λ
k
⋅
e
−
λ
=
.
.
.
=
λ
⋅
e
λ
⋅
e
−
λ
=
λ
{\displaystyle E(X)=\sum _{k=0}^{\infty }k\cdot {\frac {1}{k!}}\cdot \lambda ^{k}\cdot e^{-\lambda }=...=\lambda \cdot e^{\lambda }\cdot e^{-\lambda }=\lambda }
1
b
−
a
{\displaystyle {\frac {1}{b-a}}}
E
(
X
)
=
∫
−
∞
∞
x
⋅
f
(
x
)
d
x
=
∫
a
b
x
⋅
1
b
−
a
d
x
=
.
.
.
=
a
+
b
2
{\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f(x)\mathrm {d} x=\int _{a}^{b}x\cdot {\frac {1}{b-a}}\mathrm {d} x=...={\frac {a+b}{2}}}
X
:
Ω
→
R
≥
0
{\displaystyle X:\Omega \rightarrow \mathbb {R} ^{\geq 0}}
P
r
(
X
≥
t
)
≤
E
(
X
)
t
{\displaystyle Pr(X\geq t)\leq {\frac {E(X)}{t}}}
P
r
(
X
≥
α
E
(
X
)
)
≤
1
α
{\displaystyle Pr(X\geq \alpha E(X))\leq {\frac {1}{\alpha }}}
t
=
2
,
0
m
P
r
(
X
≥
2
,
0
)
≤
E
(
X
)
t
=
1
,
7
2
,
0
=
0
,
85
{\displaystyle t=2{,}0m\quad Pr(X\geq 2{,}0)\leq {\frac {E(X)}{t}}={\frac {1{,}7}{2{,}0}}=0{,}85}
t
=
0
,
5
m
P
r
(
Y
≥
0
,
5
)
≤
0
,
2
0
,
5
=
0
,
4
{\displaystyle t=0{,}5m\quad Pr(Y\geq 0{,}5)\leq {\frac {0{,}2}{0{,}5}}=0{,}4}
E
(
X
2
)
=
∑
x
∈
I
m
X
x
2
⋅
P
r
(
X
=
x
)
{\displaystyle E(X^{2})=\sum _{x\in ImX}x^{2}\cdot Pr(X=x)}
E
(
X
)
=
∫
−
∞
∞
x
⋅
f
X
(
x
)
d
x
{\displaystyle E(X)=\int _{-\infty }^{\infty }x\cdot f_{X}(x)\mathrm {d} x}
E
(
Y
)
=
∫
−
∞
∞
y
⋅
f
Y
(
y
)
d
y
=
∫
−
∞
∞
x
⋅
f
Y
(
x
)
d
x
{\displaystyle E(Y)=\int _{-\infty }^{\infty }y\cdot f_{Y}(y)\mathrm {d} y=\int _{-\infty }^{\infty }x\cdot f_{Y}(x)\mathrm {d} x}
E
(
g
X
)
=
∫
−
∞
∞
g
(
x
)
⋅
f
(
x
)
d
x
{\displaystyle E(gX)=\int _{-\infty }^{\infty }g(x)\cdot f(x)\mathrm {d} x}
E
(
X
2
)
=
∫
−
∞
∞
x
2
⋅
f
(
x
)
d
x
{\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x}
V
a
r
(
X
)
=
E
(
(
X
−
E
(
X
)
)
2
{\displaystyle Var(X)=E((X-E(X))^{2}\ }
σ
=
V
a
r
(
X
)
{\displaystyle \sigma ={\sqrt {Var(X)}}}
E
(
(
X
−
E
(
X
)
)
2
)
=
E
(
X
2
−
2
⋅
E
(
X
)
⋅
X
+
(
E
(
X
)
)
2
)
=
E
(
X
2
)
−
2
⋅
E
(
X
)
⋅
E
(
X
)
+
(
E
(
X
)
)
2
=
E
(
X
2
)
−
(
E
(
X
)
)
2
{\displaystyle E((X-E(X))^{2})=E(X^{2}-2\cdot E(X)\cdot X+(E(X))^{2})=E(X^{2})-2\cdot E(X)\cdot E(X)+(E(X))^{2}=E(X^{2})-(E(X))^{2}}
E
(
X
2
)
=
∑
k
=
1
∞
k
2
⋅
q
k
−
1
⋅
p
=
.
.
.
=
2
−
p
p
2
{\displaystyle E(X^{2})=\sum _{k=1}^{\infty }k^{2}\cdot q^{k-1}\cdot p=...={\frac {2-p}{p^{2}}}}
V
a
r
(
X
)
=
E
(
X
2
)
−
(
E
(
X
)
)
2
=
2
−
p
p
2
−
1
p
2
=
1
−
p
p
2
=
q
p
2
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}}
V
a
r
(
X
)
=
E
(
X
2
)
−
(
E
(
X
)
)
2
=
.
.
.
=
p
⋅
q
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...=p\cdot q}
V
a
r
(
X
)
=
E
(
X
2
)
−
(
E
(
X
)
)
2
=
2
−
p
p
2
−
1
p
2
=
1
−
p
p
2
=
q
p
2
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}={\frac {2-p}{p^{2}}}-{\frac {1}{p^{2}}}={\frac {1-p}{p^{2}}}={\frac {q}{p^{2}}}}
E
(
X
)
=
a
+
b
2
{\displaystyle E(X)={\frac {a+b}{2}}}
E
(
X
2
)
=
∫
−
∞
∞
x
2
⋅
f
(
x
)
d
x
=
.
.
.
=
b
2
+
a
⋅
b
+
a
2
3
{\displaystyle E(X^{2})=\int _{-\infty }^{\infty }x^{2}\cdot f(x)\mathrm {d} x=...={\frac {b^{2}+a\cdot b+a^{2}}{3}}}
V
a
r
(
X
)
=
E
(
X
2
)
−
(
E
(
X
)
)
2
=
.
.
.
=
(
b
−
a
)
2
12
{\displaystyle Var(X)=E(X^{2})-(E(X))^{2}=...={\frac {(b-a)^{2}}{12}}}
E
(
X
)
=
(
1
−
p
)
⋅
0
+
p
⋅
1
=
p
{\displaystyle E(X)=(1-p)\cdot 0+p\cdot 1=p}
≥
{\displaystyle \geq }
≤
{\displaystyle \leq }
(
a
n
)
n
∈
N
{\displaystyle (a_{n})_{n\in N}}
∀
ϵ
<
0
∃
n
0
∈
N
∀
n
≥
n
0
|
a
n
−
a
|
<
ϵ
{\displaystyle \forall \epsilon <0\ \exists n_{0}\in N\ \forall n\geq n_{0}\ |a_{n}-a|<\epsilon }
lim
n
→
∞
a
n
=
a
=
l
i
m
a
n
{\displaystyle \lim _{n\to \infty }a_{n}=a=lim\;a_{n}}
a
n
n
→
∞
→
a
a
n
→
a
{\displaystyle a_{n}{\overrightarrow {n\to \infty }}a\quad a_{n}\rightarrow a}
f
(
x
0
)
=
lim
x
→
x
0
f
(
x
)
{\displaystyle f(x_{0})=\lim _{x\to x_{0}}f(x)}
∀
ϵ
>
0
∃
δ
>
0
∀
x
|
x
−
x
0
|
<
δ
⇒
|
f
(
x
)
−
f
(
x
0
)
|
<
δ
{\displaystyle \forall \epsilon >0\quad \exists \delta >0\quad \forall x\quad |x-x_{0}|<\delta \Rightarrow |f(x)-f(x_{0})|<\delta }
z
w
=
x
u
+
y
v
u
2
+
v
2
+
i
∗
y
u
−
x
v
u
2
+
v
2
{\displaystyle {\frac {z}{w}}={\frac {xu+yv}{u^{2}+v^{2}}}+i*{\frac {yu-xv}{u^{2}+v^{2}}}}
|
z
|
=
x
2
+
y
2
=
z
⋅
z
¯
{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}={\sqrt {z\cdot {\overline {z}}}}}
|
z
|
=
x
2
+
y
2
{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}}
a
r
g
z
=
{
a
r
c
c
o
s
x
|
z
|
,
falls
y
≥
0
−
a
r
c
c
o
s
x
|
z
|
,
falls
y
<
0
{\displaystyle argz={\begin{cases}arccos{\frac {x}{|z|}},{\mbox{falls }}y\geq 0\\-arccos{\frac {x}{|z|}},{\mbox{falls }}y<0\end{cases}}}
e
i
⋅
ζ
=
c
o
s
ζ
+
i
⋅
s
i
n
ζ
{\displaystyle e^{i\cdot \zeta }=cos\zeta +i\cdot sin\zeta }
e
z
=
e
x
+
i
y
=
e
x
⋅
e
i
y
=
e
x
(
c
o
s
y
+
i
⋅
s
i
n
y
)
{\displaystyle e^{z}=e^{x+iy}=e^{x}\cdot e^{iy}=e^{x}(cosy+i\cdot siny)}
|
z
|
=
e
x
{\displaystyle |z|=e^{x}\quad }
a
r
g
z
=
y
±
2
k
π
∈
(
−
π
,
π
]
{\displaystyle argz=y\pm 2k\pi \in (-\pi ,\pi ]}
e
i
(
ζ
+
ψ
)
=
e
i
ζ
⋅
e
i
ψ
{\displaystyle e^{i(\zeta +\psi )}=e^{i\zeta }\cdot e^{i\psi }}
e
i
⋅
n
ζ
=
(
e
i
ζ
)
n
{\displaystyle e^{i\cdot n\zeta }=(e^{i\zeta })^{n}}
e
i
⋅
ζ
¯
=
e
i
(
−
ζ
)
=
1
e
i
ζ
{\displaystyle {\overline {e^{i\cdot \zeta }}}=e^{i(-\zeta )}={\frac {1}{e^{i\zeta }}}}
z
∈
C
beliebig
z
=
r
⋅
e
i
⋅
ζ
(
r
=
|
z
|
und
ζ
=
a
r
g
z
)
{\displaystyle z\in C{\mbox{ beliebig }}z=r\cdot e^{i\cdot \zeta }\quad (r=|z|{\mbox{ und }}\zeta =argz)}
z
k
=
{
r
k
⋅
e
i
⋅
ζ
k
,
r
k
⋅
e
i
⋅
ζ
+
2
π
k
,
r
k
⋅
e
i
⋅
ζ
+
2
⋅
2
π
k
,
.
.
.
,
r
k
⋅
e
i
⋅
ζ
+
(
k
−
1
)
⋅
2
π
k
}
{\displaystyle {\sqrt[{k}]{z}}={\begin{Bmatrix}{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\pi }{k}}},{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +2\cdot 2\pi }{k}}},...,{\sqrt[{k}]{r}}\cdot e^{i\cdot {\frac {\zeta +(k-1)\cdot 2\pi }{k}}}\end{Bmatrix}}}
kgV
(
p
(
x
)
,
q
(
x
)
)
=
p
(
x
)
⋅
q
(
x
)
ggT
(
p
(
x
)
,
q
(
x
)
)
{\displaystyle {\mbox{kgV}}(p(x),q(x))={\frac {p(x)\cdot q(x)}{{\mbox{ggT}}(p(x),q(x))}}}
p
(
x
)
=
∑
j
=
0
n
y
j
⋅
p
j
(
x
)
{\displaystyle p(x)=\sum _{j=0}^{n}{y_{j}\cdot p_{j}(x)}}
p
j
(
x
)
=
∏
i
∈
{
0
,
.
.
.
,
n
}
∖
{
j
}
x
−
x
i
x
j
−
x
i
{\displaystyle p_{j}(x)=\prod _{i\in {\begin{Bmatrix}0,...,n\end{Bmatrix}}\setminus {\begin{Bmatrix}j\end{Bmatrix}}}{\frac {x-x_{i}}{x_{j}-x_{i}}}}
a
n
=
y
0
,
n
{\displaystyle a_{n}=y_{0,n}\quad }
(
a
n
)
n
∈
N
{\displaystyle (a_{n})_{n\in N}}
(
b
n
)
n
∈
N
{\displaystyle (b_{n})_{n\in N}}
(
c
n
)
n
∈
N
{\displaystyle (c_{n})_{n\in N}}
lim
n
→
∞
(
a
n
+
b
n
)
=
a
+
b
{\displaystyle \lim _{n\to \infty }{(a_{n}+b_{n})}=a+b}
lim
n
→
∞
(
a
n
⋅
b
n
)
=
a
⋅
b
{\displaystyle \lim _{n\to \infty }{(a_{n}\cdot b_{n})}=a\cdot b}
lim
n
→
∞
(
a
n
b
n
)
=
a
b
falls
b
≠
0
und
b
n
≠
0
fuer alle
n
∈
N
{\displaystyle \lim _{n\to \infty }{({\frac {a_{n}}{b_{n}}})}={\frac {a}{b}}{\mbox{ falls }}b\neq 0{\mbox{ und }}b_{n}\neq 0{\mbox{ fuer alle }}n\in N}
lim
n
→
∞
|
a
n
|
=
|
a
|
{\displaystyle \lim _{n\to \infty }{|a_{n}|}=|a|}
lim
n
→
∞
|
a
n
|
=
|
a
|
{\displaystyle \lim _{n\to \infty }{\sqrt {|a_{n}|}}={\sqrt {|a|}}}
a
n
≤
b
n
≤
c
n
{\displaystyle a_{n}\leq b_{n}\leq c_{n}}
n
≥
k
{\displaystyle n\geq k}
lim
n
→
∞
a
n
=
lim
n
→
∞
c
n
=
c
{\displaystyle \lim _{n\to \infty }{a_{n}}=\lim _{n\to \infty }{c_{n}}=c}
lim
n
→
∞
b
n
=
c
{\displaystyle \lim _{n\to \infty }{b_{n}}=c}