Maligne Hyperthermie

Krankheit
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 5. Januar 2019 um 19:37 Uhr durch Georg Hügler (Diskussion | Beiträge) (Therapie: eine sichere Diagnosestellung würde eine unvertretbare Verzögerung mit sich bringen). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Klassifikation nach ICD-10
T88.3 Maligne Hyperthermie
{{{02-BEZEICHNUNG}}}
{{{03-BEZEICHNUNG}}}
{{{04-BEZEICHNUNG}}}
{{{05-BEZEICHNUNG}}}
{{{06-BEZEICHNUNG}}}
{{{07-BEZEICHNUNG}}}
{{{08-BEZEICHNUNG}}}
{{{09-BEZEICHNUNG}}}
{{{10-BEZEICHNUNG}}}
{{{11-BEZEICHNUNG}}}
{{{12-BEZEICHNUNG}}}
{{{13-BEZEICHNUNG}}}
{{{14-BEZEICHNUNG}}}
{{{15-BEZEICHNUNG}}}
{{{16-BEZEICHNUNG}}}
{{{17-BEZEICHNUNG}}}
{{{18-BEZEICHNUNG}}}
{{{19-BEZEICHNUNG}}}
{{{20-BEZEICHNUNG}}}
Vorlage:Infobox ICD/Wartung {{{21BEZEICHNUNG}}}
ICD-10 online (WHO-Version 2019)

Die Maligne Hyperthermie (MH, veraltet auch maligne Hyperpyrexie, Narkose-Hyperthermie-Syndrom, Ombrédanne-Syndrom) ist eine seltene pharmakogenetische Erkrankung der Skelettmuskulatur, der ein angeborener Defekt der intrazellulären Calciumregulation zugrunde liegt.[1] Nach Verabreichung von auslösenden Substanzen (Triggern) wird bei entsprechender genetischer Veranlagung durch eine unkontrollierte Freisetzung von Calcium-Ionen über funktionell veränderte sarkoplasmatische Calciumkanäle eine lebensbedrohliche Stoffwechselentgleisung in der Skelettmuskulatur verursacht, die einer schnellen Behandlung bedarf. Die Maligne Hyperthermie ist eine sehr seltene, lebensbedrohliche Komplikation einer Narkose und kann auch in der Phase nach der Operation auftreten.[2] Die Triggersubstanzen (insbesondere als volatile Anästhetika eingesetzte halogenierte Kohlenwasserstoffe und das muskelentspannende Succinylcholin) werden nicht nur bei Operationen in Allgemeinanästhesie, sondern auch auf Intensivstationen und in der Notfallmedizin eingesetzt.[3][1]

Die Symptomatik ist sehr variabel (von nur leicht verlaufenden Formen mit nur einem oder wenigen Symptomen bis zur fulminanten MH-Krise[4]) und umfasst unter anderem Muskelstarre, Herzrasen, eine erhöhte Produktion von Kohlenstoffdioxid (CO2) und Temperaturerhöhung bis hin zur Übersäuerung des Körpers sowie Stoffwechsel- und Organversagen, die letztlich zum Tod führen können. Durch sofortige Unterbrechung der Zufuhr von als Auslöser in Frage kommenden Narkosemitteln und Behandlung mit dem Wirkstoff Dantrolen kann eine Maligne Hyperthermie wirksam behandelt werden. Durch dessen Einführung konnte in der Vergangenheit die Sterblichkeit stark gesenkt werden.

Bei Verdacht auf eine Veranlagung zur Malignen Hyperthermie stehen der In-vitro-Kontrakturtest sowie molekularbiologische Verfahren zur Verfügung, um diese abzuklären. Die Durchführung einer Narkose ist in solchen Fällen auch ohne auslösende Substanzen möglich.

Neben Menschen ist ein Vorkommen auch bei anderen Säugetieren bekannt wie etwa bei Schweinen, Hunden und Pferden, weshalb diese in der Forschung als Tiermodell genutzt werden.

Epidemiologie

Die Häufigkeit (Prävalenz) der genetischen Disposition liegt unabhängig von ethnischer Zugehörigkeit in Deutschland bei etwa 1:2.600[5] bzw. bei 1:3.000 bis 1:2.000.[6] Angaben zur Häufigkeit eines klinischen Auftretens variieren von 1:5.000 bis 1:100.000 Narkosen. Die meisten Autoren gehen von etwa einem Fall pro 20.000 Narkosen aus, wobei fulminante MH-Krisen mit 1:60.000 (1:250.000 bis 1:10.000[7]) deutlich seltener sind. Auch in nichtoperativen Fachgebieten können MH-Fälle auftreten: Vor dem Hintergrund, dass 2017 beispielsweise 430.452 intensivmedizinisch behandelte Patienten in Deutschland beatmet wurden[8], sind allein auf Intensivstationen statistisch jährlich bis zu 165 Fälle einer MH zu erwarten. Die Maligne Hyperthermie tritt in jeder Altersstufe auf, junge Patienten sind jedoch häufiger betroffen (Etwa die Hälfte der MH-Krisen betreffen Kinder und Jugendliche bis zum zwölften Lebensjahr[9]). Das Durchschnittsalter liegt bei etwa 18 Jahren, zudem tritt die MH aus unbekannten Gründen[10] öfter bei Männern (2:1) auf. Die Mehrzahl der Patienten mit einer aufgetretenen Malignen Hyperthermie hatte bereits vorherige Narkosen mit unauffälligem Verlauf (In zahlreichen Fällen tritt eine MH erst nach wiederholter Triggerexposition auf[11]). Aufgrund des abnehmenden Einsatzes der Triggersubstanzen (insbesondere Halothan und Succinylcholin) ist die Häufigkeit rückläufig. Die Sterblichkeitsrate (Letalität) wurde in der Vergangenheit durch verbesserte Ausbildung und Patientenüberwachung wie die Entwicklung von Dantrolen von über 90 % auf unter 5 % gesenkt. Im Durchschnitt wird die Erkrankung im Fall eines Auftretens heute früher erkannt.[12]

Am häufigsten tritt die Maligne Hyperthermie bei Hausschweinen auf, insbesondere bei schnellwüchsigen Rassen mit hohem Skelettmuskelansatz wie Pietrain. In einigen Zuchtlinien können bis zu 95 % der Tiere betroffen sein.[13] Bei Schweinen kann bereits Stress als Auslöser der Erkrankung ausreichen, man spricht dann vom Porcinen Stress-Syndrom (PSS). Die Fleischqualität dieser Tiere ist vermindert (→ PSE-Fleisch).

Bei Haushunden wird die Prävalenz mit 1:15.000 angegeben, womit die Erkrankung eine sehr seltene Komplikation darstellt. Eine genetische Prädisposition ist beim Greyhound nachgewiesen.[14]

Ursachen und Entstehungsmechanismen

Normale Skelettmuskelkontraktion

Hauptartikel: Kontraktiler Mechanismus

Die physiologische Kontraktion des Skelettmuskels erfolgt durch die Freisetzung von Calciumionen aus dem Speichersystem der Zelle, dem sarkoplasmatischen Retikulum. Zur Auslösung einer Muskelkontraktion wird über die motorische Endplatte ein elektrischer Impuls (Aktionspotential) eines motorischen Nerven auf die Muskelzelle übergeleitet. Dadurch kommt es in Ausstülpungen der Zellmembran (T-Tubuli) zur Aktivierung eines spannungsgesteuerten Ionenkanals. Dieser steht in räumlichem Kontakt zu einem Calciumkanal des sarkoplasmatischen Retikulums, dem Ryanodin-Rezeptor, der in der Folge geöffnet wird. Durch das in das Zellinnere (Zytosol) strömende Calcium (Ca2+) wird die Kontraktion der Aktin- und Myosinfilamente ermöglicht, der Muskel zieht sich zusammen. Diese Verbindung eines Aktionspotentials mit der Muskelkontraktion wird als elektromechanische Kopplung bezeichnet.[15]

Vorgänge bei der Malignen Hyperthermie

Bei einer Malignen Hyperthermie liegen genetische Veränderungen (Mutationen) der Ryanodin- oder Dihydropyridin-Rezeptoren (das heißt der sarkoplasmatischen Calciumionenkanäle[16]) vor. Durch die Verabreichung von Triggersubstanzen wird bei disponierten Patienten eine massive und unkontrollierte Calciumfreisetzung innerhalb der Muskelzelle ausgelöst. Dadurch kommt es zu einer Aktivierung der Muskelfasern. Da sowohl die Wiederaufnahme des Calciums in das sarkoplasmatische Retikulum als auch die Lösung der kontraktilen Filamente im Anschluss an das Kontrahieren energieabhängige Prozesse sind, die ATP benötigen, kommt es rasch zu einem Energiemangel in der Zelle. Die Calciumionen führen zu einer starken Steigerung des Zellstoffwechsels (aerobe Energiegewinnung, später auch anaerober Stoffwechsel), was zu einem erhöhten Sauerstoffumsatz und einer erhöhten Kohlenstoffdioxid- und Wärmeproduktion führt. Diese Prozesse finden anfangs isoliert im Skelettmuskel statt. Im Verlauf kommt es zum Zelluntergang und Muskelzerfall (Rhabdomyolyse), was einen Sauerstoffmangel (Hypoxie), vermehrte Kohlenstoffdioxidanreicherung (Hyperkapnie) sowie eine starke Übersäuerung (Laktatazidose) und Überwärmung (Hyperthermie) des gesamten Körpers verursacht. Dies wirkt sich in der Folge (sekundär) schädigend auf andere Organe aus (vgl. Klinisches Bild). Ob neben dem Skelettmuskel auch an anderen Organen die genetischen Veränderungen eine Rolle spielen und dort zu Störungen führen, ist unklar. Die Herzmuskulatur ist von den Mutationen des Ryanodin-Rezeptors nicht betroffen.[17]

Genetik

Sechs verschiedene Genorte auf verschiedenen Chromosomen konnten bislang mit der Malignen Hyperthermie in Verbindung gebracht werden.[18] Die häufigste Ursache ist eine von etwa 100 bekannten Punktmutationen des Ryanodin-Rezeptor codierenden Gens RYR1 auf Chromosom 19, die sich bei über 80 % der MH-Patienten nachweisen lassen (MH-susceptibility 1). Daneben können auch Mutationen auf dem Gen des Dihydropyridin-Rezeptors und anderer Proteine ursächlich für eine Maligne Hyperthermie sein (MH-susceptibility 2–6). Während Punktmutationen in den meisten Fällen den Austausch einer einzelnen Aminosäure bewirken, sind auch Deletionen und Insertionen bekannt. Die Vererbung der Mutationen erfolgt beim Menschen autosomal-dominant.

Patienten mit einer Central-Core-Myopathie und einer Multiminicore-Myopathie können eine MH-Disposition aufweisen. Diesen seltenen Muskelerkrankungen liegen häufig ebenfalls Mutationen des RYR1-Gens zugrunde.[19][20] Auch bei anderen Muskelkrankheiten wie der periodischen hypokaliämischen Lähmung, der kaliumsensitiven Myotonie (Myotonia fluctuans), dem seltenen King-Denborough-Syndrom kann eine MH-Disposition bestehen.[21] Auch wenn bei der Mehrzahl der Patienten mit McArdle-Erkrankung (Glykogenose Typ V) keine Narkoseprobleme dokumentiert wurden, kann auch in dieser Patientengruppe ausnahmsweise eine Maligne Hyperthermie auftreten.[22]

Es gibt Evidenz dafür, dass eine Disposition für einen durch Sport ausgelösten Hitzschlag und MH auf dieselbe genetische Anlage zurückzuführen ist.[23][24]

Triggersubstanzen

 
Verdampfer mit Inhalationsanästhetika (Sevofluran, Isofluran)

Auslösende Triggersubstanzen sind dampf- oder gasförmige Inhalationsanästhetika wie z. B. Sevofluran, Desfluran und Isofluran sowie depolarisierende Muskelrelaxanzien (Succinylcholin).[1] Vergiftungen, Drogenkonsum, körperliche Anstrengung oder Angst können als Kofaktoren für die Auslösung eine Rolle spielen, in Einzelfällen auch die alleinige Ursache sein. Die anderen in der Anästhesie genutzten Pharmaka (Lachgas, Opioide, Schlafmittel, Benzodiazepine, nichtdepolarisierende Muskelrelaxanzien) sind sicher und können auch bei MH-Disposition genutzt werden.

Neben Halothan können Koffein, Ryanodin und Kresole eine Maligne Hyperthermie auslösen, was für diagnostische Zwecke im Labor genutzt wird (Kontrakturtest, s. u.). Durch die Aufnahme von Koffein mit der Nahrung oder die Verabreichung kresolhaltiger Medikamente wie Heparin oder Insulin ist keine Gefährdung zu erwarten.[25]

Klinisches Bild und Akutdiagnostik

Die Ausprägung der Malignen Hyperthermie ist sehr variabel, dadurch ist die Diagnose schwierig. Frühe Zeichen sind eine erhöhte Kohlenstoffdioxidkonzentration (Hyperkapnie) der Ausatemluft, eine Erhöhung der Herzfrequenz (Tachykardie bzw. tachykarde Herzrhythmusstörungen), eine gesteigerte Atemfrequenz (Tachypnoe), eine Muskelstarre (Rigor, generalisierte Muskelrigidität), eine Verkrampfung des Musculus masseter (Masseterspasmus, „Trismus“) unmittelbar nach Gabe von Succinylcholin, eine Übersäuerung des Körpers (metabolische Azidose) und ein Sauerstoffmangel (Hypoxie). Weitere Frühsymptome sind ventrikuläre Arrhythmien und ein instabiles Blutdruckverhalten. Der namensgebende Temperaturanstieg (Hyperthermie) ist ein Spätzeichen, ebenso wie Blutdruckabfall (Hypotonie), Muskelstarre (Muskelrigidität), Kaliumfreisetzung (Hyperkaliämie), bedrohliche Herzrhythmusstörungen bis hin zum Herz-Kreislaufstillstand und Muskelzerfall (Rhabdomyolyse).[3][1]

Neben den Standard-Überwachungsmaßnahmen (EKG, Blutdruckmessung, Pulsoxymetrie, Kapnometrie) sind zur Sicherung der Diagnose und zur Verlaufskontrolle die frühzeitige und wiederholte Entnahme von Blutproben (Blutgasanalyse, Elektrolyte, CK, Transaminasen, Laktat und Myoglobin) notwendig. Der früh einsetzende Anstieg der Kohlendioxidkonzentration in der Ausatemluft ist oft verbunden mit einer starken Erwärmung des CO2-Absorbers am Narkosegerät.[26]

Es werden folgende Verlaufsformen der Malignen Hyperthermie unterschieden:

  • Die fulminante Maligne Hyperthermie entwickelt sich, einmal in Gang gekommen, krisenhaft rasant und ist charakterisiert durch ein breites Spektruzm klinischer Symptome. Das erste Zeichen ist ein schneller, enormer Anstieg der endexspiratorisch gemessenen CO2-Konzentration, verbunden mit einem Anstieg der Herzfrequenz. Eine fulminante MH-Krise liegt vor, wenn der CO2-Gehalt (Partialdruck) im Blut über 8,0 kPa (60 mmHg) beträgt (Normalwert bis 6,0 kPa; 45 mmHg), ein Basendefizit von > 8 mmol/l (Normalwert bis 3 mmol/l) als Zeichen einer schweren metabolischen Azidose vorliegt und/oder ein rascher Temperaturanstieg ohne andere Ursache auf über 38,8 °C gemessen werden kann. Im weiteren Verlauf kommt es zu einer zunehmenden Beeinträchtigung des Kreislaufes mit reflektorischer Erhöhung des Herzminutenvolumens, Tachykardie, Blutdruckabfall und Schädigung des Herzmuskels. Wird die Krise nicht schnell erkannt und behandelt, kommt es durch die Stoffwechselstörungen zu Organschäden wie einem Nierenversagen (Crush-Niere), Schäden des Gehirns (Hirnödem), Blutgerinnungsstörungen (Verbrauchskoagulopathie), und Herz-Kreislaufversagen, die letztlich zum Multiorganversagen und zum Tod führen. Die Ausbildung und Entwicklung einer fulminanten MH geschieht innerhalb von Minuten bis wenigen Stunden.
  • Die abortive Maligne Hyperthermie beginnt schleichender, oft erst Stunden, nach der Triggerexposition. Diese Form der Malignen Hyperthermie ist wesentlich häufiger, durch ihr sehr variables klinisches Bild aber oft schwer zu diagnostizieren. Differenzialdiagnostisch kommen bei entsprechender Symptomatik vor allem eine Sepsis, eine thyreotoxische Krise, ein malignes Neuroleptika-Syndrom oder ein Phäochromozytom in Frage. Ein abortiver Verlauf kann sich jederzeit zu einer fulminanten Krise entwickeln (exazerbieren).
  • Bei einem Masseterspasmus handelt es sich um eine starke, akute Verkrampfung des Musculus masseter am Kiefer, die typischerweise nach der Gabe von Succinylcholin auftritt und im Rahmen der endotrachealen Intubation durch eine erschwerte oder unmögliche Mundöffnung auffällt. Während dieses Symptom oft isoliert auftritt, kann es auch eine sich schnell entwickelnde Verlaufsform ankündigen. Eine weitere Manifestation, die ohne weitere Symptome vorkommen kann, ist eine dunkle Verfärbung des Urins durch eine Myoglobinurie infolge einer Muskelschädigung (Rhabdomyolyse), wenn Triggersubstanzen im Rahmen einer Narkose verwendet wurden.[27][28]

Therapie

Die Therapie muss bei Verdacht auf das Vorliegen einer sich entwickelnden MH-Krise nach Feststellung von Frühsymptomen und Ausschluss anderer Ursache schnell eingeleitet und konsequent weitergeführt werden. Die Maßnahmen sind sehr personalintensiv, zusätzliche Unterstützung muss frühzeitig organisiert werden. Empfehlungen für die Behandlung der Malignen Hyperthermie liefert die S1-Leitlinie "Therapie der malignen Hyperthermie" (Stand: März 2018).[1]

Die sofortige Beendigung der Zufuhr von Triggersubstanzen ist vorrangig. Beim Einsatz von Inhalationsanästhetika wird der Verdampfer vom Narkosegerät entfernt und die Beatmung mit hohem Frischgasfluss (100 % Sauerstoff) durchgeführt, um eine Rückatmung der Gase zu minimieren. Wenn machbar – abhängig vom Narkosegerät –, wird das CO2-Absorbervolumen (Atemkalk) deutlich erhöht. Ebenfalls erhöht wird das Atemminutenvolumen, um das stark angestiegene CO2 abzuatmen. Die Narkose wird mit intravenösen Medikamenten ohne Triggerwirkung fortgeführt (Total intravenöse Anästhesie, TIVA).

 
Strukturformel von Dantrolen

Entscheidend für die Prognose ist die spezifische Therapie durch schnellstmögliche Infusion des Wirkstoffs Dantrolen. Dieser ist ein Hydantoin-Derivat, das die Calciumfreisetzung aus dem sarkoplasmatischen Retikulum hemmt. Dantrolen ist der einzige verfügbare Wirkstoff, der eine ursächliche (kausale) Therapie ermöglicht. Daher befindet sich der Wirkstoff auf der Liste der versorgungsrelevanten Wirkstoffe des Bundesinstituts für Arzneimittel und Medizinprodukte (BfArM).[29] Laut der neuen S1-Leitlinie (März 2018) ist zur Notfalltherapie bei Erwachsenen eine Bevorratung mit mindestens 10 mg/kg Körpergewicht Dantrolen notwendig; dies entspricht 36 bis 48 Injektionsflaschen Dantrolen. Da das Notfallmedikament innerhalb weniger Minuten verfügbar sein muss, sollte es in ausreichender Menge unmittelbar in der operativen Einheit gelagert werden. In Kliniken mit weiter auseinanderliegenden Narkoseplätzen empfiehlt die Leitlinie eine Lagerung an mehreren prädestinierten Stellen. Auch in Praxen, die Patienten ambulant in Allgemeinanästhesie und unter Verwendung von Triggersubstanzen der Malignen Hyperthermie versorgen, ist eine ausreichende Vorratshaltung von Dantrolen unerlässlich.[1] Ein Unterschreiten der Mindestmengen kann im Einzelfall zu gefährlichen Verzögerungen führen und gegebenenfalls schwerste Schädigungen des Patienten zur Folge haben.[30]

Dantrolen wird so oft wiederholt infundiert, bis eine klinische Wirkung einsetzt, um es im Anschluss kontinuierlich weiter zu verabreichen. Dantrolen hat eine leicht muskelrelaxierende Wirkung. Meistens jedoch ist nach Beendigung der Narkose trotzdem eine ausreichende Spontanatmung möglich.

Die S1-Leitlinie zur Therapie der Malignen Hyperthermie empfiehlt für die Soforttherapie eine Initialdosis von zunächst 2,5 mg/kg Körpergewicht. Die Gabe muss gegebenenfalls mehrmals und in kurzen Abständen wiederholt werden, bis eine klinische Wirkung einsetzt und keine MH-Symptome mehr nachweisbar sind. In Einzelfällen müssen hierbei auch Dosierungen von 10 mg/kg Körpergewicht überschritten werden.[1]

Parallel wird eine symptomatische Therapie durchgeführt. Dazu gehört die Stabilisierung des Kreislaufes, ein Ausgleich der metabolischen Azidose sowie der Elektrolytstörungen, insbesondere der eines hohen Kaliumspiegels (Hyperkaliämie), eine Steigerung der Urinproduktion (Diurese) sowie unter Umständen die Behandlung von Herzrhythmusstörungen. Da die Hyperthermie ein Spätsymptom ist, ist eine aktive Kühlung (äußere Maßnahmen, kalte Infusionslösungen) bei erhöhter Körpertemperatur erst im Verlauf notwendig. Die forcierte Diurese erfordert einen Blasen-Dauerkatheter, über den ebenfalls eine Kühlung (hypothermische Spülung) erfolgen kann. Durch die Verabreichung von Heparin kann Gerinnungsstörungen entgegengewirkt werden. Die Gabe von Kalziumantagonisten ist unwirksam und kann bei gleichzeitiger Dantrolengabe zu Schäden am Herzmuskel führen, sie ist deshalb nicht angezeigt (kontraindiziert).

Die Kreislaufüberwachung sollte mittels invasiver Blutdruckmessung über einen arteriellen Zugang durchgeführt werden. Nach der initialen Stabilisierung des Patienten ist die Weiterbehandlung auf einer Intensivstation notwendig.[28]

Prävention

Diagnostik der MH-Veranlagung

Die Indikation zur abklärenden Diagnostik besteht nach einem Narkosezwischenfall oder dem Verdacht auf das Vorliegen einer familiären Veranlagung. Patienten mit nachgewiesener Hyperthermieneigung (MH-susceptible MHS) werden über die Gefahren der Exposition mit Triggersubstanzen aufgeklärt und erhalten einen Anästhesieausweis mit entsprechender Warnung.

In-vitro-Kontraktur-Test

Der In-vitro-Kontraktur-Test (IVKT, IVCT) ist ein empfindliches und spezifisches Verfahren (Sensitivität 94 %, Spezifität 99 %) und stellt den Goldstandard der MH-Diagnostik dar.[31]

Hierbei wird in Regionalanästhesie eine Muskelbiopsie aus dem Oberschenkel (Musculus vastus lateralis oder Musculus vastus medialis) entnommen und gemäß dem europäischen Testprotokoll den Triggern Halothan (aufsteigende Dosierungen von 0,5; 1,0; 2,0; 3,0 und ggf. 4,0 Volumenprozent) und Koffein (aufsteigende Dosierungen von 0,5 bis 32 mmol/l) ausgesetzt. Bei Patienten mit MH-Veranlagung tritt eine Kontraktion der entnommenen Probe auf, diese werden als MH-susceptible (MHS) bezeichnet, bei negativer Reaktion als MH-nonsusceptible (MHN). Die Reaktion auf nur eines der beiden Agenzien tritt bei 10 % der Patienten auf (MH-equivocal, MHE), auch diese gelten als gefährdet, obwohl eine abschließende wissenschaftliche Beurteilung solcher Fälle aussteht. Neben dieser Definition der European Malignant Hyperthermia Group[32] existiert eine Testvariante der North American Malignant Hyperthermia Group, nach der auch eine positive Reaktion auf nur einen der beiden Trigger als MH-susceptible bezeichnet wird.[33]

Der Verlässlichkeit des IVCT steht der Nachteil der Invasivität gegenüber. Die Diagnostik sollte frühestens drei Monate nach einem Zwischenfall erfolgen, aufgrund einer möglichen Altersabhängigkeit auch erst ab dem Schulalter.[34] Die Durchführung des In-vitro-Kontraktur-Tests ist zudem logistisch aufwendig. Das Untersuchungsergebnis ist nur am frischen Muskelpräparat aussagekräftig, weswegen von der Entnahme bis zum Abschluss der Untersuchungen höchstens fünf Stunden vergehen dürfen.

Die diagnostische Wertigkeit des IVCT bei unklaren muskulären Symptomen oder einer erhöhten Aktivität der Creatin-Kinase im Blutserum ungeklärter Ursache wird uneinheitlich beurteilt.[35][36]

Molekulargenetische Diagnostik

Bei einem positiven IVCT kann eine molekulargenetische Diagnostik angeschlossen werden, um die zugrundeliegende Mutation zu identifizieren.[37] Dazu reicht eine eingeschickte Blutprobe aus, was die Durchführbarkeit einfach gestaltet, eine Altersbeschränkung besteht nicht. Eine initiale genetische Testung (ohne vorherigen Kontraktionstest) ist wegen der Heterogenität der MH-Veranlagung und der damit bedingten Unsicherheit, Betroffene nicht zu erkennen oder Nicht-Betroffenen falsch zu diagnostizieren, nicht sinnvoll. Ist eine Mutation identifiziert, wird auch den Familienangehörigen eine Untersuchung angeboten. Allerdings stimmen in etwa 5 % die Ergebnisse von Genstatus und IVCT nicht überein, so dass negativ getesteten Personen zum weitgehend sicheren Ausschluss ein IVCT empfohlen wird.[34][37]

Hotline für Maligne Hyperthermie

Die SRH-Kliniken Landkreis Sigmaringen bieten auf ihrer Webseite eine Informationsbroschüre zum Download an, die u. a. Adressen der Diagnostik- und Informationszentren enthält.[38] Für weitere Fragen sowie zur Notfallberatung steht die deutschlandweite MH-Hotline unter der Rufnummer 07571/100-2828 zur Verfügung.

Narkosedurchführung

Im Prämedikationsgespräch wird anamnestisch nach dem Auftreten der MH in der Familie des Patienten gesucht. Besteht ein Verdacht, wird vor geplanten Eingriffen eine entsprechende Testung durchgeführt.

Wenn für den Eingriff geeignet, können Regionalanästhesieverfahren bei Patienten mit MH-Risiko (genetische Prädisposition, vorhandene risikobehaftete Muskelerkrankung) in der Regel gefahrlos eingesetzt werden. Ist eine Allgemeinanästhesie notwendig, wird auf die Triggersubstanzen (Succinylcholin, Inhalationsanästhetika) verzichtet und eine total intravenöse Anästhesie (TIVA) durchgeführt. Das Narkosegerät muss zuvor mit reinem Sauerstoff durchspült werden, der Narkosegasverdampfer wird entfernt. Eine prophylaktische Gabe von Dantrolen ist nicht angezeigt.[39]

Rechtliche Aspekte

Laut § 630e BGB ist der Arzt dazu verpflichtet, den Patienten sowohl über Art und Umfang als auch über mögliche Risiken des bevorstehenden Eingriffes aufzuklären. Hierbei müssen alternative Behandlungsmethoden ebenfalls in Betracht gezogen werden, solange diese gleichermaßen zum Erfolg des Eingriffes führen.[40] Auf das Risiko einer MH und deren Häufigkeit wird in allgemeinen Aufklärungsgesprächen zur Anästhesie hingewiesen. Sollte sich jedoch aus der Anamnese des Patienten der Verdacht einer Eigen- oder Familiendisposition ergeben, muss der Patient über die Möglichkeit einer MH-Krise aufgeklärt werden und diese Aufklärung schriftlich dokumentiert werden. Sollte es nach einer Operation zu einem Schadenersatzprozess kommen, kann im Zweifel die Dokumentation einer ordnungsgemäßen Aufklärung und Einwilligung des Patienten prozessentscheidend sein.[41] Aufgrund des zeitkritischen Einsatzes des Notfallmedikamentes ist die Lagerung des Wirkstoffes in der operativen Einheit notwendig. In Kliniken mit weiter auseinanderliegenden Operationseinheiten sollte das Notfallmedikament auch an mehreren Stellen gelagert werden. Auch auf Intensivstationen und in anästhesiologischen Praxen muss ausreichend Dantrolen vorhanden sein.[1][41] Laut einem Urteil des Bundesgerichtshofes aus dem Jahr 1990 „kann ein Organisationsverschulden des Krankenhausträgers darin liegen, dass ein Medikament […] nicht rechtzeitig vor der Operation zur Verfügung steht[41].“ Nationale Fachgesellschaften und internationale Expertengruppen empfehlen, dass in jeder Anästhesie- oder Intensiveinheit, in der MH-Triggersubstanzen verwendet werden, Handlungsempfehlungen (SOPs) zur Prävention, zum Erkennen und Behandeln einer MH-Krise vorzuhalten sind.[30][42] Die Festlegung der Menge des zu bevorratenden Medikaments liegt in der Verantwortung des Abteilungsleiters, die Bevorratung selbst liegt in der Obhut des Leiters der Klinikapotheke.[41]

Geschichtliche Aspekte

Schon in den Anfangszeiten der Anästhesie, als Äther- und Chloroformnarkosen die Regel waren, wurde über „Hitzschläge“ und „Ätherkrämpfe“ berichtet, denen wahrscheinlich eine Maligne Hyperthermie zugrunde lag.[43] Die ersten Veröffentlichungen über solche Ereignisse in der internationalen Fachliteratur gehen auf das Jahr 1900 zurück. Der Kinderchirurg Louis Ombrédanne (1871–1956), der neben einem 1908 entwickelten Ätherverdampfer auch weitere Verbesserungen zur Narkosetechnik beitrug, ist Namensgeber des Hyperpyrexie-Syndroms.[44] Den Zusammenhang zwischen genetischer Disposition und der Auslösung durch die Allgemeinanästhesie beschrieb Michael Denborough. 1962 in Australien.[45] Dieser hatte den Fall eines jungen Studenten untersucht, der wegen eines Unterschenkelbruches operiert worden war und nach Verabreichung von Halothan die Symptome einer fulminanten Malignen Hyperthermie entwickelt hatte. Der Patient wurde mit Eis gekühlt und überlebte die Krise. Es stellte sich heraus, dass zuvor bereits zehn nahe Verwandte bei Narkosen verstorben waren.[46] Verläufe bei Schweinen nach der Gabe von Succinylcholin wurden wenig später veröffentlicht.[47] Die Wirksamkeit von Dantrolen zur Behandlung der Malignen Hyperthermie wurde 1975 zunächst ebenfalls bei Schweinen nachgewiesen[48] und 1982 in einer klinischen Studie auch beim Menschen bestätigt.[49] 1983 wurde der Kontrakturtest zur Diagnose der MH eingeführt, der seit 2001 durch die genetische Diagnostik ergänzt wird. Bereits 1990 hatten zwei Arbeitsgruppen unabhängig voneinander den Genort der meisten MH-assoziierten Mutationen identifiziert.[50][51]

Literatur

  • Werner Klingler (Hrsg.): Maligne Hyperthermie und assoziierte Erkrankungen in Anästhesie und Intensivmedizin. Thieme, Stuttgart 2016, ISBN 978-3-13-240868-5.
  • Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin: S1-Leitlinie: Therapie der malignen Hyperthermie. In: Anästh Intensivmed. Band 59, 2018, S. 204–208.
  • Wappler F. S1-Leitlinie maligne Hyperthermie, Update 2018. Anaesthesist 2018;67:529–532.
  • W. Klingler, E. Pfenninger: Inhalative Analgosedierung auf der Intensivstation. In: Medizinische Klinik – Intensivmedizin und Notfallmedizin. , doi:10.1007/s00063-018-0453-7.
  • E. Pfenninger, M. Minde, S. Heiderich, Werner Klingler: SOPs und Guidelines zur malignen Hyperthermie. In: Anästh Intensivmed. Band 59, 2018, S. 4–11.
  • H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, K. Stowell: Malignant hyperthermia: a review. In: Orphan J Rare Dis. Band 10, 2015, S. 93.
  • T. Metterlein, Frank Schuster, B. M. Graf, Martin Anetseder: Maligne Hyperthermie. In: Anaesthesist. Band 63, 2014, S. 908–918.
  • M. Anetseder, N. Roewer: Maligne Hyperthermie. In: Rossaint, Werner, Zwissler (Hrsg.): Die Anästhesiologie. Allgemeine und spezielle Anästhesiologie, Schmerztherapie und Intensivmedizin. 2. Auflage. Springer, Berlin 2008, ISBN 978-3-540-76301-7.
  • H. Rüffert, M. Wehner, C. Deutrich, D. Olthoff: Maligne Hyperthermie – The ugly. In: Anaesthesist. 2007 Sep;56(9), S. 923–929. Review. PMID 17565473
  • H. Rosenberg, M. Davis, D. James, N. Pollock, K. Stowell: Malignant hyperthermia. In: Orphanet J Rare Dis. 2007 Apr 24;2, S. 21. Review. PMID 17456235
  • H. Rosenberg, N. Sambuughin: Malignant Hyperthermia Susceptibility GeneReviews. University of Washington, Seattle 2006.
  • M. Steinfath, F. Wappler, J. Scholz: Maligne Hyperthermie. Allgemeine, klinische und experimentelle Aspekte. In: Anaesthesist. 2002 Apr;51(4), S. 328–345. Review. PMID 12063729

Einzelnachweise

  1. a b c d e f g h Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin: S1-Leitlinie: Therapie der malignen Hyperthermie. In: Anästh Intensivmed. 2018, S. 204–208.
  2. R.S. Litman, C.D. Flood, R.F. Kaplan, Y.L. Kim, J.R. Tobin: Postoperative malignant hyperthermia. An analysis of cases from the North American Malignant Hyperthermia Registry. In: Anesthesiology. Band 109, 2008, S. 825–829.
  3. a b W. Klingler, E. Pfenninger: Inhalative Analgosedierung auf der Intensivstation. In: Medizinische Klinik - Intensivmedizin und Notfallmedizin. 3. August 2018, ISSN 2193-6218.
  4. H. Rosenberg, N. Pollock, A. Schiemann, T. Bulger, K. Stowell: Malignant hyperthermia: a review. 2015.
  5. Frank Lehmann-Horn, Werner Klingler, Karin Jurkat-Rott: Nonanesthetic Malignant Hyperthermia. In: Anesthesiology: The Journal of the American Society of Anesthesiologists. Band 115, Nr. 5, 1. November 2011, ISSN 0003-3022, S. 915–917, doi:10.1097/ALN.0b013e318232008f (asahq.org [abgerufen am 19. Oktober 2018]).
  6. S. Wolak, B., Rücker, N. Kohlschmidt, S. Doetsch, O. Bartsch, U. Zechner, I. Tzanova: Homozygous and compound heterozygous RYRI mutations. New findings on prevalence and penetrance of malignant hyperthermia. In: Anaesthesist. Band 63, 2014, S. 643–650.
  7. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin: S1-Leitlinie: Therapie der malignen Hyperthermie. 2018, S. 204.
  8. Statistisches Bundesamt: Gesundheit. Grunddaten der Krankenhäuser. Fachserie 12 Reihe 6.1.1-2017, 2017.
  9. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin: S1-Leitlinie: Therapie der malignen Hyperthermie. 2018, S. 204.
  10. W. Klingler, S. Heiderich u. a.: Functional and genetic characterization of clinical malignant hyperthermie crises: a multi-centre study. In: Orphan J Rare Dis. Band 9, 2014, S. 8.
  11. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin: S1-Leitlinie: Therapie der malignen Hyperthermie. 2018, S. 204.
  12. Rosenberg u. a. 2007; Anetseder und Roewer 2008, S. 1315.
  13. Wolfgang Löscher: Narkotika. In: Löscher, Ungemach (Hrsg.): Pharmakotherapie bei Haus- und Nutztieren. 7. erw. Auflage. Paul Parey, 2006, ISBN 3-8304-4160-6, S. 66–82.
  14. Roman T. Skarda: Maligne Hyperthermie. In: Peter F. Suter, Hans G. Niemand (Hrsg.): Praktikum der Hundeklinik. 10. Auflage. Paul-Parey-Verlag, Stuttgart 2006, ISBN 3-8304-4141-X, S. 146.
  15. Schmidt, Lang (Hrsg.): Physiologie des Menschen: Mit Pathophysiologie. 30. Auflage. Springer, Berlin 2007, ISBN 978-3-540-32908-4, S. 115–121.
  16. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin: S1-Leitlinie: Therapie der malignen Hyperthermie. 2018, S. 204.
  17. Rüffert u. a. 2007, S. 923ff; Rosenberg u. a. 2007.
  18. Online Mendelian Inheritance in ManMalignant Hyperthermia Susceptibility (abgerufen Oktober 2008)
  19. Monnier u. a.: A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. In: Hum Mol Genet. 2003;12, S. 1171–1178 PMID 12719381
  20. Zhang u. a.: A mutation in the human ryanodine receptor gene associated with central core disease. In: Nature Genet. 1993;5, S. 46–50 PMID 8220422
  21. Rosenberg und Sambuughin 2007; Rosenberg u. a. 2007; Anetseder und Roewer 2008, S. 1316.
  22. G. Bollig, S. Mohr, J. Raeder: McArdle's disease and anaesthesia: case reports. Review of potential problems and association with malignant hyperthermia. In: Acta anaesthesiologica Scandinavica. Band 49, Nummer 8, September 2005, S. 1077–1083, ISSN 0001-5172. doi:10.1111/j.1399-6576.2005.00755.x. PMID 16095447. (Review).
  23. F. Protasi u. a.: Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. In: J Physiol. 2009 Jul 1;587(Pt 13), S. 3095–3100.
  24. Bendahan u. a.: A noninvasive investigation of muscle energetics supports similarities between exertional heat stroke and malignant hyperthermia. In: Anesth Analg. 2001 Sep;93(3), S. 683–689.
  25. Anetseder und Roewer 2008; Rosenberg u. a. 2007, Rüffert u. a. 2007.
  26. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin: S1-Leitlinie: Therapie der malignen Hyperthermie. 2018, S. 204.
  27. Rosenberg u. a. 2007; Anetseder und Roewer 2008, S. 1317–1318.
  28. a b Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI): Empfehlung zur Therapie der malignen Hyperthermie. Revidierte Version 2008.
  29. Liste der versorgungsrelevanten Wirkstoffe (ohne Impfstoffe). Bundesinstitut für Arzneimittel und Medizinprodukte, abgerufen am 19. September 2018.
  30. a b F. Wappler: S1-Leitlinie Maligne Hyperthermie. In: Der Anaesthesist. Band 67, Nr. 7, 26. Juni 2018, ISSN 0003-2417, S. 529–532, doi:10.1007/s00101-018-0462-1.
  31. H. Ording, V. Brancadoro, S. Cozzolino u. a.: In vitro contracture test for diagnosis of malignant hyperthermia following the protocol of the European MH Group: results of testing patients surviving fulminant MH and unrelated low-risk subjects. The European Malignant Hyperthermia Group. In: Acta Anaesthesiol Scand. 1997 Sep;41(8), S. 955–966. PMID 9311391.
  32. P.M. Hopkins, H. Rüffert, M.M. Snoeck, T. Girard, K.P.E. Glahn, F.R. Ellis, C.R. Müller, A. Urwyler: European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility. In: British Journal of Anaesthesia. 115, 2015, S. 531, doi:10.1093/bja/aev225.
  33. M. G. Larach: Standardization of the caffeine halothane muscle contracture test. North American Malignant Hyperthermia Group. In: Anesth Analg. 1989 Oct;69(4), S. 511–515. PMID 2675676
  34. a b Anetseder 2008, S. 1321; Rosenberg 2007.
  35. Malandrini u. a.: Muscle biopsy and in vitro contracture test in subjects with idiopathic HyperCKemia. In: Anesthesiology. 2008;109(4), S. 625–628. PMID 18813041
  36. Weglinski u. a.: Malignant Hyperthermia Testing in Patients with Persistently Increased Serum Creatine Kinase Levels. In: Anesth Analg. 1997;84(5), S. 1038–1041. PMID 9141928.
  37. a b A. Urwyler, T. Deufel, T. McCarthy, West S; European Malignant Hyperthermia Group: Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. In: Br J Anaesth. 2001 Feb;86(2), S. 283–287. PMID 11573677
  38. Maligne Hyperthermie. SRH Kliniken Landkreis Sigmaringen, abgerufen am 19. Oktober 2018.
  39. Rosenberg u. a. 2007, Anetseder und Roewer 2008.
  40. § 630 Abs. 1 BGB.
  41. a b c d Werner Klingler: Maligne Hyperthermie und assoziierte Erkrankungen in Anästhesie und Intensivmedizin. 2016;21-23.
  42. E. Pfenninger, M. Minde, S. Heiderich, Werner Klingler: SOPs und Guidelines zur malignen Hyperthermie. In: Anästh Intensivmed. Nr. 59, 2018, S. 4–11.
  43. G. G. Harrison, H. Isaacs: Malignant hyperthermia. An historical vignette. In: Anaesthesia. 1992 Jan;47(1), S. 54–56. PMID 1536407
  44. Christoph Weißer: Ombrédanne, Louis. In: Werner E. Gerabek, Bernhard D. Haage, Gundolf Keil, Wolfgang Wegner (Hrsg.): Enzyklopädie Medizingeschichte. De Gruyter, Berlin 2005, ISBN 3-11-015714-4, S. 1069.
  45. M. A. Denborough, J. F. Forster, R. R. Lovell, P. A. Maplestone, J. D. Villiers: Anaesthetic deaths in a family. In: Br J Anaesth. 1962 Jun;34, S. 395–396. PMID 13885389
  46. M. A. Denborough: Malignant hyperthermia. 1962. In: Anesthesiology. Band 108, Nummer 1, Januar 2008, S. 156–157, doi:10.1097/01.anes.0000296107.23210.dd, PMID 18156894.
  47. L. W. Hall, N. Woolf, J. W. Bradley, D. W. Jolly: Unusual reaction to suxamethonium chloride. In: Br Med J. 1966 Nov 26;2(5525), S. 1305. PMID 5924819
  48. G. G. Harrison: Control of the malignant hyperpyrexic syndrome in MHS swine by dantrolene sodium. In: Br J Anaesth. 1975 Jan;47(1), S. 62–65. PMID 1148076
  49. M. E. Kolb, M. L. Horne, R. Martz: Dantrolene in human malignant hyperthermia. In: Anesthesiology. 1982, Apr;56(4), S. 254–262. PMID 7039419
  50. McCarthy u. a.: Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12-13.2. In: Nature. 1990 Feb 8;343(6258), S. 562–564. PMID 2300206
  51. MacLennan u. a.: Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. In: Nature. 1990 Feb 8;343(6258), S. 559–561. PMID 1967823