Dünger

Dünger oder Düngemittel ist ein Sammelbegriff für Stoffe und Stoffgemische, die dazu dienen, höhere Erträge oder schnelleres Wachstum bei Kulturpflanzen zu erzielen. Ein Grundprinzip der Düngung folgt dem liebigschen Minimumsgesetz.
Wichtigste Bestandteile eines Düngers sind meist die Hauptnährelemente Stickstoff (N), Phosphor (P) und Kalium (K), da ein Mangel an diesen Nährstoffen in vielen Böden das Pflanzenwachstum beschränkt. Diese Düngerbestandteile werden gesondert oder in Mischungen angeboten, die den Anforderungen der jeweiligen Kulturpflanzen möglichst gerecht werden sollten. Dünger, welche Stickstoff, Phosphor und Kalium beinhalten, werden NPK-Dünger genannt. In zweiter Linie enthalten Dünger auch Schwefel, Kalzium und Magnesium. Schließlich benötigen Pflanzen auch Spurenelemente, welche auch in Düngern vorkommen können.
Vereinfacht kann man sagen, dass Stickstoff der Erzeugung von Blattmasse dient, Phosphor dient der Blüten- und Fruchtbildung, Kalium stärkt die Holzbildung und Pflanzenstatik, Magnesium fördert die Nährstoffaufnahme.
Der gelegentlich kursierende Ausdruck Kunstdünger wird häufig falsch verwendet. Sprachlich verweist er auf synthetisch hergestellte Dünger, organische wie mineralische. Der Begriff wird aber manchmal als Synonym nur für mineralische Dünger verwendet, in der falschen Annahme, nur mineralische Dünger würden synthetisiert.
Düngerarten
Man unterscheidet Dünger an der Art, wie der düngende Stoff gebunden ist:
Mineralischer Feststoffdünger
Im anorganischen Dünger oder Mineraldünger liegen die düngenden Elemente in Form von Salzen vor. Anorganische Dünger werden meist synthetisiert, sprich chemisch hergestellt, oder seltener im Bergbau gewonnen. Sie haben einen großen Produktivitätsfortschritt in der Landwirtschaft ermöglicht und werden heute sehr häufig eingesetzt. Problematisch sind die synthetischen Dünger in Anbetracht des enormen Energieaufwandes bei der Herstellung. Mineralische Phosphatdüngung führt zudem zu einer Anreicherung des giftigen und radioaktiven Schwermetalls Uran im Boden und damit in der Nahrungskette, da Phosphat und Uran chemisch eng aneinander gebunden sind. Zudem kommt es zu einer Anreicherung des ebenfalls giftigen Schwermetalls Cadmium, das über die Pflanzen in die menschliche Nahrungskette gelangt. Zwar gibt es heute Verfahren, Cadmium aus Phosphaterzen zu entfernen, allerdings werden diese aus Kostengründen und Mangels gesetzlicher Vorgaben nur vereinzelt eingesetzt.
Der Einsatz von Mineraldüngern kann in Granulat- oder Pulverform, häufig als Phosphat oder Sulfat oder in flüssiger Form erfolgen. Selbst eine Aufnahme über die Blätter ist begrenzt möglich.
Erfinder der Mineraldünger bzw. Kunstdünger ist Justus von Liebig.
Die Düngung mit gasförmigem Kohlenstoffdioxid (CO2) ist eine wichtige Anwendung im Unterglasgartenbau. Grund ist der durch den photosynthetischen Verbrauch entstehende CO2-Mangel bei ungenügendem Nachschub an Frischluft, besonders im Winter bei geschlossener Lüftung, weil Pflanzen CO2 als Grundsubstanz benötigen. Dabei wird das Kohlenstoffdioxid entweder direkt als reines Gas (relativ teuer) oder als Verbrennungsprodukt aus Propan oder Erdgas eingebracht (Kopplung von Düngung und Heizung). Die mögliche Ertragsteigerung ist abhängig davon, wie stark der Mangel an CO2 ist und wie stark das Lichtangebot für die Pflanzen ist.
Organische Dünger
Bei den organischen Düngern sind oder waren die düngenden Elemente an Kohlenstoff gebunden. Organische Dünger sind normalerweise tierischen oder pflanzlichen Ursprungs, können aber auch synthetisiert werden (z. B. Harnstoff). Sie entfalten ihre Wirkung langfristiger und werden weniger schnell ausgewaschen als mineralische. Eine Kennzahl für die Wirkgeschwindigkeit ist der C/N-Quotient, das Verhältnis von Kohlenstoff zu Stickstoff. Je größer die Kennzahl ist, desto langsamer wirkt der Dünger.
Organische Dünger sind meist Abfallstoffe aus der Landwirtschaft, die wiederverwendet werden können; dies kann zu geschlossenen Kreisläufen führen.
Beispiele für organische Dünger:
- Gülle
- Jauche
- Mist
- Guano
- Kompostierte Pflanzenreste
- Blutmehl
- Fischmehl
- Knochenmehl
- Hornspäne
- Harnstoff
Vorteile des Düngens
Durch Düngung werden die zur Ernährung des Menschens nötigen landwirtschaftlichen Erträge deutlich gesteigert. Durch die Düngung werden die Bodelebewesen und Mikroorganismen gefüttert, welche die Mineralstoffe die im Boden sind Pflanzenverfügbar machen.
Gefahren des Überdüngens
Bei zu starker Ausbringung von Düngern besteht die Gefahr, dass der Boden überdüngt (Eutrophierung) und damit die Bodenfauna nachteilig verändert wird, was wiederum zu Lasten der Erträge und der Qualität der Ernte geht.
Überdies werden die nicht von den Pflanzen aufgenommenen Düngerbestandteile in das Grundwasser ausgeschwemmt und können dadurch dessen Qualität gefährden. Zudem führt das nährsalzreiche Wasser, wenn es in Oberflächengewässer gelangt, zu einem Überangebot an Mineralstoffen, was zu Algenblüten führen kann und so Sauerstoffmangel im Tiefenwasser von Seen verursacht.
Dieses Problem besteht vor allem in Gebieten intensiver landwirtschaftlicher Nutzung mit hohem Viehbesatz (z.B. im Münsterland und in Südwestniedersachsen) und stellt die Wasserversorgung dort vor erhebliche Probleme. Zweck des Ausbringens von Gülle und Mist ist hier weniger die Steigerung des Ertrags, als eine Entsorgung der Mastbetriebe.
Werden die Kulturen zu stark gedüngt, können die Erträge sinken, es gilt also die Pflanzen optimal zu düngen. Die Landwirte können ihren Boden untersuchen lassen, und anhand der Bodenprobeanalyse die Düngungsnorm korrigieren.
Düngungseinfluss auf den Boden
Einflüsse auf chemische und physikalische Bodeneigenschaften
Eine Reihe von Düngemitteln (insbesondere N-Düngemittel) tragen zur Bodenversauerung bei. Dies kann ohne Ausgleichsmaßnahme zu einer Beeinträchtigung der Strukturverhältnisse im Boden führen. Durch planvolle Düngungsmaßnahmen kann jedoch einem Absinken der Bodenreaktion entgegengewirkt werden, so dass nachteilige Auswirkungen auf Nährstoffdynamik, Bodenlebewesen und Bodenstruktur nicht zu befürchten sind.
Einfluss auf Bodenlebewesen
Die Absenkung des pH-Wertes und eine überhöhte Salzkonzentration können das Bodenleben beeinträchtigen. Außerdem geht mit steigender N-Düngung die Aktivität N-bindender Bakterien zurück. Insgesamt fördert eine ausreichende Bodenversorgung mit organischen und mineralischen Düngern die Menge und Vielfalt der Bodenlebewesen. Diese beeinflussen entscheidend die Bodenfruchtbarkeit. Bei ordnungsgemäßer mineralischer Düngung bleibt die Regenwurmdichte weitgehend stabil. Durch wirtschaftseigene Dünger wird der Regenwurmbesatz gefördert.
Anreicherung mit Schwermetallen
Über die Anreicherung des Bodens mit Schwermetallen durch mineralische Düngung gibt es häufig falsche Vorstellungen. Von den in der Landwirtschaft und im Gartenbau verwendeten Mineraldüngern enthalten einige Phosphatdünger einen geringen natürlichen Cadmiumgehalt. Die Cadmiumbelastung des Bodens durch Phosphatdünger ist jedoch bei üblicher Düngung so gering, dass die Anreicherung selbst nach 100-jähriger Mineraldüngung analytisch kaum nachweisbar ist. Zu einer unerwünschten Anreicherung mit Schwermetallen kann langjährige, intensive Düngung mit Sekundärrohstoffen (z.B. Klärschlamm) führen. Aus diesem Grunde müssen bei Klärschlammausbringung auf landwirtschaftliche Flächen sowohl der Klärschlamm als auch der Boden untersucht werden. Die Einflüsse der Düngung auf die chemischen und physikalischen Bodeneigenschaften sind durch bestimmte acker- und pflanzenbauliche Maßnahmen korrigierbar. Im Vergleich dazu ist eine Anreicherung mit Schwermetallen unveränderbar, da Schwermetalle kaum ausgewaschen werden und der Entzug durch die Pflanzen nur gering ist. Durch zu hohe Schwermetallgehalte im Boden wird die Bodenfruchtbarkeit langfristig geschädigt.
Düngungseinfluss auf das Wasser
Eine Verschlechterung der Wassergüte durch Düngung kann erfolgen bei
- Nitratanreicherung des Grundwassers durch N-Auswaschung,
- Nährstoffanreicherung, insbesondere Phosphatanreicherung, in Oberflächengewässern z.B. durch Abschwemmung von Boden, mit der Folge einer Eutrophierung des Gewässers.
Nitratbelastung des Grundwassers
Nitrat (NO3-) ist im Trinkwasser unerwünscht, weil es unter bestimmten Umständen in das gesundheitlich bedenkliche Nitrit umgewandelt wird. Es kann mit sekundären Aminen (Ammoniakbase), die in der Nahrung vorkommen oder bei der Verdauung entstehen, Nitrosamine bilden. Von diesen zählen einige zu den krebserregenden Stoffen. Um die gesundheitlichen Risiken weitgehend auszuschließen, sollen die Nitratgehalte im Trinkwasser möglichst niedrig sein. Der Grenzwert für den Nitratgehalt im Trinkwasser wurde 1991 mit der EG-Richtlinie 91/676/EWG auf 50mg NO3-/Liter festgesetzt. Dieser Grenzwert kann bei unsachgemäßer Düngung, insbesondere auf leichten, durchlässigen Böden überschritten werden. Grundwasser enthält von Natur aus meistens weniger als 10mg NO3-/Liter. Als Ursache für die in der Nachkriegszeit z.T. stark angestiegenen Nitratgehalte sind u.a. zu nennen:
- Dichtere Besiedlung mit zunehmenden Abwassermengen aus Haushaltungen, Gewerbe und Industrie und Mängel in der Abwasserkanalisation.
- Intensive landwirtschaftliche Bodennutzung; hier sind wirtschaftseigene Dünger (Gülle, Jauche) kritischer zu werten als Mineraldünger, da sie oftmals nicht so gezielt wie Mineraldünger eingesetzt werden und damit der Stickstoffausnutzungsgrad schlechter ist. Hinzu kommt, dass regional durch Aufstockung der Tierbestände, u.U. auch durch Konzentration der Tierhaltung, das Problem der Nitratauswaschung verschärft wurde. Allerdings ist die N-Auswaschung, festzustellen mit Lysimeteranlagen oder Tiefbohrungen, nicht automatisch eine Folge steigender Düngemengen. Die angewendeten Düngemengen sind in den letzten Jahren deutlich zurückgegangen. Die Ursache ist vielmehr in der unsachgemäßen Anwendung von Düngern zu suchen.
Folgende Maßnahmen zur Verminderung der Nitratbelastung sind zu empfehlen:
- N-Vorrat des Bodens bei der Düngung berücksichtigen. Im Frühjahr können je nach Fruchtfolge, Bodenart, Bodentyp, organischer Düngung und Herbst- bzw. Winterwitterung sehr unterschiedliche Mengen an mineralisiertem, d.h. pflanzenverfügbaren Stickstoff, im Boden vorhanden sein. Sie können durch die Nmin-Methode erfasst und bei der Ermittlung des N-Düngebedarfs berücksichtigt werden.
- N-Mengen dem Nährstoffbedarf der Pflanzen anpassen. Überdüngung bei Sonderkulturen, wie Wein, Hopfen undGemüse, aber auch bei anspruchsvollen Ackerfrüchten wie Mais, vermeiden.
- Düngung zur rechten Zeit und wenn nötig Aufteilung der Düngemenge in Teilgaben.
- Gezielter Einsatz der Wirtschaftsdünger.
- N-Bindung durch möglichst ganzjährigen Pflanzenbewuchs, damit der durch die Vorfrucht nicht verbrauchte sowie der durch Mineralisierung freigesetzte Stickstoff biologisch gebunden wird. So soll bei hohen N-Spätdüngungsgaben zur Erzeugung von Qualitätsweizen oder beim Anbau von Körnerleguminosen durch pflanzenbauliche Maßnahmen, wie Fruchtfolgegestaltung, Zwischenfruchtanbau oder Strohdüngung, die N-Auswaschung vermindert werden.
- Umbruch von mehrjährigen Futterschlägen mit Leguminosen (Kleegras, Luzernegras) nicht im Herbst, sondern im Frühjahr vornehmen.
Wasser ist ein kostbares und für den Menschen unentbehrliches Gut. Es kann nicht ersetzt werden. Die Versorgung der Bevölkerung mit hochwertigem Trinkwasser muss in ausreichender Menge sichergestellt werden. Gefährdungen der Wassergüte müssen soweit als möglich vermieden werden.
Phosphatbelastung der Oberflächengewässer
Eutrophierung bezeichnet man einen Gewässerzustand, der durch hohen Nährstoffgehalt und ein dadurch verursachtes üppiges Auftreten von Wasserpflanzen und Algen gekennzeichnet ist. Meistens ist die Eutrophierung durch hohe Phosphatzufuhr bedingt, da Phosphat natürlicherweise in Oberflächengewässer kaum vorhanden ist. Eine starke P-Zufuhr steigert das Wachstum von Algen und Wasserpflanzen. Der Abbau der abgestorbenen Algen- und Pflanzenmasse verbraucht übermäßig viel Sauerstoff des Wassers. Deshalb kann es infolge Sauerstoffmangels zum Fischsterben kommen. Phosphate gelangen in die Abwässer durch
- Siedlungsabwässer (Waschmittel),
- Auswaschung von Phosphat bzw. Abschwemmung von Boden und Düngern.
Da Düngerphosphat meist im Boden gebunden wird, kann die Auswaschung von Phosphat auf Lehm- und Tonböden praktisch vernachlässigt werden. Anders ist die P-Abschwemmung zu bewerten:
- Im Zusammenhang mit dem Bodenabtrag durch Wassererosion,
- bei unsachgemäßem Einsatz von wirtschaftseigenen Düngern.
Hier kann es schnell zu erheblichen Zufuhren an P in die Gewässer kommen. Durch Ausbringen von Gülle und Jauche auf eine Schneedecke von über 5cm Dicke (insbesondere in hängigem Gelände und auf tiefgefrorenem Boden) kann es bei der Schneeschmelze bzw. bei starken Niederschlägen zu einem oberflächigen Wasserabfluss kommen. Mit dem Wasserabfluss werden auch die in der Gülle enthaltenen Nährstoffe abgeschwemmt. Phosphat und weitere Nährstoffe können so in Oberflächengewässer gelangen.
Düngungseinfluss auf die Luft
Nach der Ausbringung organischer (Stallmist, Gülle) und anorganischer (Mineraldünger) Dünger können erhebliche gasförmige Stickstoffverluste als Ammoniak auftreten.
Organische Dünger
Die Höhe der Ammoniakverluste ist von der Art und Zusammensetzung des organischen Düngers, dessen Behandlung, wie z.B. Einarbeitung in den Boden, und von der Witterung bei der Ausbringung abhängig. Folgende Reihenfolge bei der Höhe der Ammoniakverluste ergibt sich hinsichtlich
- der Art derWirtschaftsdünger: Tiefstallmist<Rottemist< Normalgülle (Schweinegülle< Rindergülle)< Biogasgülle bzw. Frischmist;
- des TS- (Trockensubstanz)Gehaltes: wasserreiche Gülle< Gülle mit hohem TS-Gehalt.
in Abhängigkeit vom TS-Gehalt der Gülle, dem Zeitpunkt der Einarbeitung, der Tierart und der Witterung ist mit Verlusten von ca. 1% (bei Gülle-Injektion) und nahezu 100% (Stoppelgabe ohne Einarbeitung) des in der Gülle vorhandenen Ammoniumstickstoffs zu rechnen. Neben der Art der Lagerung und Ausbringung hat der Zeitpunkt der Einarbeitung großen Einfluss auf die Höhe der Verluste. Sofortige Einarbeitung mindert die Ammoniakverluste ganz erheblich.
Mineralischer Feststoffdünger
Die Ammoniakverluste stickstoffhaltiger Mineraldünger steigen wie folgt: Kalkammonsalpeter< Mehrnährstoffdünger< Diammonphosphat<Harnstoff< Kalkstickstoff< Ammoniumsulfat.
An den gesamten Ammoniakstickstoffverlusten der Landwirtschaft ist der Anteil der mineralischen Dünger gering.
Mineralische Nährstoffe und ihr Einsatz
Nährstoffaufnahme der Pflanzen
Bei der Mineralstoffaufnahme aus dem Boden ist zwischen der Ernährung von Sommer- und Winterarten sowie von mehrjährigen Pflanzen zu unterscheiden:
- Bei Sommerarten (z.B. Kartoffeln) steigt der Bedarf an Nährstoffen nach dem Auflaufen je nach der Länge der Wachstumszeit schnell bis zu einem bestimmten Punkt vor der Reife an und fällt dann ab oder hört ganz auf.
- Bei Winterarten (z.B. Wintergetreide oder -raps) unterbricht die winterliche Wachstumsruhe (Frost) die Nährstoffaufnahme.
- Mehrjährige Pflanzen mit ausdauernden unterirdischen Organen, z.B. Gräser, Kleearten, Hopfen und Wein, speichern in den Wurzeln Nährstoffe und beschleunigen mit diesen Reservestoffen die Entwicklung im folgenden Frühjahr.
Nährstoffaufnahme aus der Bodenlösung
Die Pflanze nimmt die Nährsalze mit den Wurzeln aus einer wässrigen Lösung auf. Sie liegen in der Bodenlösung als elektrisch geladene Mineralteilchen (Ionen) vor. Zusätzlich können die im Boden schwer verfügbaren Pflanzennährstoffe Eisen, Mangan, Kupfer und Zink mit organischen Stoffen wasserlösliche Chelatverbindungen eingehen und in dieser Form von den Pflanzen aufgenommen werden. Von den 16 unentbehrlichen Nährelementen deckt die Pflanze ihren Bedarf an Kohlenstoff, Wasserstoff und Sauerstoff vorrangig als Kohlendioxid aus der Luft und Wasser aus dem Boden. Es werden in Sonderfällen aber auch (beispielsweise aus mit anorganischen Schadstoffen belasteten Böden) für Mensch und Tier giftige Schwermetallionen in die Pflanzen eingelagert (z.B. Cadmiumgehalt in Pilzen). Ein Pflanzennährstoff wird verstärkt von den Wurzeln aufgenommen und in den Pflanzenorganen über den Bedarf hinaus angereichert (Luxuskonsum), wenn er durch starke Mineralisierung (z.B. Stickstofffreisetzung in humosen Böden) oder einseitig hohe Düngergaben in größeren Mengen in der Bodenlösung enthalten ist. Die mengenmäßige Nährstoffaufnahme der Pflanze hängt von der Leistung der Wurzelatmung ab. Leicht erwärmbare Böden bieten mit günstigem Luft-Wasser-Haushalt im Krumenbereich die besten Bedingungen für die Nährstoffaufnahme.
Nährstoffaufnahme durch das Blatt
Die mineralische Nährstoffaufnahme erfolgt vor allem durch die Wurzel. Doch können auch die Blätter Wasser und die darin gelösten Stoffe durch Kleinporen aufnehmen. Theoretisch könnte man die Pflanze vollständig durch die Blätter ernähren. Im Integrierten Pflanzenbau gewinnt die gezielte Nährstoffzufuhr (Spritz- oder Sprühverfahren) in bestimmten Wachstumsabschnitten mit verdünnten Düngersalzlösungen als Blattdüngung zunehmende Bedeutung. Durch die Blattdüngung wird mit geeigneten Ausbringungsgeräten ein mengenmäßig geringer, aber hochwirksamer Nährstoffbelag auf die grünen Pflanzenteile aufgebracht. Seit Jahren bewährt sich im praktischen Anbau vorrangig die ergänzende Versorgung mit Stickstoff, Magnesium und Spurennährstoffen durch das Blatt. Der Vorteil dieses Verfahrens einer gezielten Nährstoffzufuhr besteht im hohen Ausnutzungsgrad, der Nachteil in der nur begrenzt möglichen Nährstoffmenge mit einer Gabe. Um entwicklungshemmende Blattverbrennungen zu vermeiden, sind bei der Blattdüngung die richtige Konzentration der Lösung und eine Rücksichtnahme auf empfindliche Wachstumsperioden des Pflanzenbestandes zu beachten. Blattdüngung erfolgt heute vorrangig, wenn eine kurzfristige Nährstoffsbedarfsdeckung in einem bestimmten Wachstumsstadium notwendig ist, die aus der Boden- Nachlieferung nicht ohne weiteres zu befriedigen ist (N-Spätdüngung bei Weizen, P-Zufuhr zu Mais oder Behebung plötzlich auftretender Nährstoffmangelerscheinungen z.B. durch Bor-Spritzung gegen Herz- und Trockenfäule bei Zuckerrüben). (siehe auch den Abschnitt Stoffaustausch über die Oberfläche im Artikel Blatt)
Düngerverbrauch
Der weltweite Verbrauch an Düngemitteln betrug 1999 141,4 Mio. Tonnen (Quelle: FAO). Die größten Verbraucher sind (in Mio. Tonnen):
- China : 36,7
- Vereinigte Staaten : 19,9
- Indien : 18,4
- Brasilien : 5,9
- Frankreich : 4,8
- Deutschland : 3,0
- Pakistan : 2,8
- Indonesien : 2,7
- Kanada : 2,6
- Spanien : 2,3
- Australien : 2,3
- Türkei : 2,2
- Vereinigtes Königreich : 2,0
- Vietnam : 1,9
- Mexiko : 1,8
Diese Zahlen sind insofern relevant, als die Herstellung von Stickstoffdünger sehr energieintensiv ist. Sie geben jedoch keine Information über das Pro-Kopf- bzw. Pro-Hektar-Verhältnis.
Die größten Düngerproduzenten
Das bedeutendste Herstellerland stickstoffhaltiger Düngemittel ist China, gefolgt von Indien und den USA. In Europa sind die wichtigsten Produzenten Russland und Ukraine, gefolgt von Polen, Niederlande, Deutschland und Frankreich.

| Rang | Land | Produktion (in Mio. t) |
Rang | Land | Produktion (in Mio. t) |
|---|---|---|---|---|---|
| 1 | China | 23,6 | 9 | Ägypten | 1,5 |
| 2 | Indien | 10,6 | 10 | Saudi-Arabien | 1,3 |
| 3 | USA | 9,4 | 11 | Polen | 1,2 |
| 4 | Russische Föd. | 6,0 | 12 | Bangladesch | 1,1 |
| 5 | Kanada | 3,8 | 13 | Niederlande | 1,1 |
| 6 | Indonesien | 2,9 | 14 | Deutschland | 1,0 |
| 7 | Ukraine | 2,3 | 15 | Frankreich | 1,0 |
| 8 | Pakistan | 2,2 |
Weitere Tabellen zu Produktionsdaten findet man hier:
- Industrie - die Hauptproduzenten von: Aluminium, Eisen, Kunstfasern, Papier, Stahl, Zement
- Bergbau - die Hauptfördernationen von: Bauxit, Blei, Eisenerz, Diamanten, Gold, Kupfer, Platin, Silber, Zink, Zinn
Geschichte des Düngers
Bereits seit der minoischen Zeit wurden landwirtschaftlich genutzte Felder zur Steigerung der Ernte mit tierischen und menschlichen Fäkalien bestreut. Im 19. Jahrhundert begann man auch Asche, Kalk und Mergel als Dünger zu verwenden. Um 1840 konnte der Chemiker Justus von Liebig die wachstumsfördernde Wirkung von Stickstoff, Phosphaten und Kalium nachweisen. Stickstoff erhielt man vor allem durch den Einsatz von Guano, einer Substanz, die sich aus den Exkrementen von Seevögeln bildete. Da die Guanovorräte jedoch begrenzt waren und größtenteils aus Südamerika eingeführt werden mussten, sann man auf eine Methode, Stickstoff synthetisch zu erzeugen. Zwischen 1905 und 1908 entwickelte der Chemiker Fritz Haber die katalytische Ammoniak-Synthese. Dem Industriellen Carl Bosch gelang es daraufhin, ein Verfahren zu finden, welches die massenhafte Herstellung von Ammoniak ermöglichte. Das Haber-Bosch-Verfahren bildete die Grundlagen der Produktion von synthetischem Dünger, dem sogenannten "Kunstdünger" (zur Problematik des Begriffs s. o.). Seit dem Zweiten Weltkrieg brachte die Industrie dann immer wirksamere und gezielter einsetzbare chemische Düngemittel auf den Markt. Im letzten Viertel des 20. Jahrhunderts geriet der synthetische Dünger jedoch zunehmend in die Kritik, da seine übermäßige Verwendung für verschiedene ökologische Schäden wie die Ermüdung des Bodens, Sauerstoffmangel und Fischsterben verantwortlich gemacht wurde.
Weblinks
Bereits seit der minoischen Zeit wurden landwirtschaftlich genutzte Felder zur Steigerung der Ernte mit tierischen und menschlichen Fäkalien bestreut. Im östlichen Mittelmeerraum fraßen die Schafe und Ziegen in den Sommermonaten die stehen gelassenen Getreidehalme ab. Durch die Ausscheidung von Exkrementen wurden die Felder gleichzeitig auch gedüngt. Erst in byzantinischer Zeit war durch den großen Bevölkerungsanstieg eine zusätzliche Düngung der Felder nötig. Damals scheinen Mist und Fäkalien auf die Felder ausgebracht worden zu sein. Dies würde erklären, warum man in dieser Zeit viele Tonscherben, die wohl gleichfalls in die Fäkalien geworfen wurden, auf den Feldern findet. Im 19. Jahrhundert begann man auch Asche, Kalk und Mergel als Dünger zu verwenden. Um 1840 konnte der Chemiker Justus von Liebig die wachstumsfördernde Wirkung von Stickstoff, Phosphaten und Kalium nachweisen. Stickstoff erhielt man vor allem durch den Einsatz von Guano, einer Substanz, die sich aus den Exkrementen von Seevögeln bildete. Da die Guanovorräte jedoch begrenzt waren und größtenteils aus Südamerika eingeführt werden mussten, sann man auf eine Methode, Stickstoff synthetisch zu erzeugen. Zwischen 1905 und 1908 entwickelte der Chemiker Fritz Haber die katalytische Ammoniak-Synthese. Dem Industriellen Carl Bosch gelang es daraufhin, ein Verfahren zu finden, welches die massenhafte Herstellung von Ammoniak ermöglichte. Das Haber-Bosch-Verfahren bildete die Grundlagen der Produktion von synthetischem Dünger, dem sogenannten "Kunstdünger" (zur Problematik des Begriffs s. o.). Seit dem Zweiten Weltkrieg brachte die Industrie dann immer wirksamere und gezielter einsetzbare chemische Düngemittel auf den Markt. Im letzten Viertel des 20. Jahrhunderts geriet der synthetische Dünger jedoch zunehmend in die Kritik, da seine übermäßige Verwendung für verschiedene ökologische Schäden wie die Ermüdung des Bodens, Sauerstoffmangel und Fischsterben verantwortlich gemacht wurde.
Siehe auch
Algensaft | Gründüngung | Guano | Haber-Bosch-Verfahren | Humus | Landwirtschaft | Urgesteinsmehl