E-UTRA

Schnittstelle für den Mobilfunkstandard LTE
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. November 2014 um 15:29 Uhr durch Nightwalker-87 (Diskussion | Beiträge) ({{anchor|Frequency bands deployment}} Deployments by region). Sie kann sich erheblich von der aktuellen Version unterscheiden.

e-UTRA is the air interface of 3GPP's Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for evolved UMTS Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE)[1] also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification.[1] E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, UEs and EnodeBs.

EUTRAN architecture as part of a LTE and SAE network

It is a radio access network standard meant to be a replacement of the UMTS and HSDPA/HSUPA technologies specified in 3GPP releases 5 and beyond. Unlike HSPA, LTE's E-UTRA is an entirely new air interface system, unrelated to and incompatible with W-CDMA. It provides higher data rates, lower latency and is optimized for packet data. It uses OFDMA radio-access for the downlink and SC-FDMA on the uplink. Trials started in 2008.

Features

EUTRAN has the following features:

  • Peak download rates of 299.6 Mbit/s for 4×4 antennas, and 150.8 Mbit/s for 2×2 antennas with 20 MHz of spectrum. LTE Advanced supports 8×8 antenna configurations with peak download rates of 2,998.6 Mbit/s in an aggregated 100 MHz channel.[2]
  • Peak upload rates of 75.4 Mbit/s for a 20 MHz channel in the LTE standard, with up to 1,497.8 Mbit/s in an LTE Advanced 100 MHz carrier.[2]
  • Low data transfer latencies (sub-5 ms latency for small IP packets in optimal conditions), lower latencies for handover and connection setup time.
  • Support for terminals moving at up to 350 km/h or 500 km/h depending on the frequency band.
  • Support for both FDD and TDD duplexes as well as half-duplex FDD with the same radio access technology
  • Support for all frequency bands currently used by IMT systems by ITU-R.
  • Flexible bandwidth: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz are standardized. By comparison, W-CDMA uses fixed size 5 MHz chunks of spectrum.
  • Increased spectral efficiency at 2–5 times more than in 3GPP (HSPA) release 6
  • Support of cell sizes from tens of meters of radius (femto and picocells) up to over 100 km radius macrocells
  • Simplified architecture: The network side of EUTRAN is composed only by the enodeBs
  • Support for inter-operation with other systems (e.g., GSM/EDGE, UMTS, CDMA2000, WiMAX, etc.)
  • Packet switched radio interface.

Rationale for E-UTRA

Although UMTS, with HSDPA and HSUPA and their evolution, deliver high data transfer rates, wireless data usage is expected to continue increasing significantly over the next few years due to the increased offering and demand of services and content on-the-move and the continued reduction of costs for the final user. This increase is expected to require not only faster networks and radio interfaces but also higher cost-efficiency than what is possible by the evolution of the current standards. Thus the 3GPP consortium set the requirements for a new radio interface (EUTRAN) and core network evolution (System Architecture Evolution SAE) that would fulfill this need.

These improvements in performance allow wireless operators to offer quadruple play services - voice, high-speed interactive applications including large data transfer and feature-rich IPTV with full mobility.

Starting with the 3GPP Release 8, e-UTRA is designed to provide a single evolution path for the GSM/EDGE, UMTS/HSPA, CDMA2000/EV-DO and TD-SCDMA radio interfaces, providing increases in data speeds, and spectral efficiency, and allowing the provision of more functionality.

Architecture

EUTRAN consists only of enodeBs on the network side. The enodeB performs tasks similar to those performed by the nodeBs and RNC (radio network controller) together in UTRAN. The aim of this simplification is to reduce the latency of all radio interface operations. eNodeBs are connected to each other via the X2 interface, and they connect to the packet switched (PS) core network via the S1 interface.[3]

EUTRAN protocol stack

 
EUTRAN protocol stack

The EUTRAN protocol stack consist of:[3]

  • Physical layer:[4] Carries all information from the MAC transport channels over the air interface. Takes care of the link adaptation (AMC), power control, cell search (for initial synchronization and handover purposes) and other measurements (inside the LTE system and between systems) for the RRC layer.
  • MAC:[5] The MAC sublayer offers a set of logical channels to the RLC sublayer that it multiplexes into the physical layer transport channels. It also manages the HARQ error correction, handles the prioritization of the logical channels for the same UE and the dynamic scheduling between UEs, etc..
  • RLC:[6] It transports the PDCP's PDUs. It can work in 3 different modes depending on the reliability provided. Depending on this mode it can provide: ARQ error correction, segmentation/concatenation of PDUs, reordering for in-sequence delivery, duplicate detection, etc...
  • PDCP:[7] For the RRC layer it provides transport of its data with ciphering and integrity protection. And for the IP layer transport of the IP packets, with ROHC header compression, ciphering, and depending on the RLC mode in-sequence delivery, duplicate detection and retransmission of its own SDUs during handover.
  • RRC:[8] Between others it takes care of: the broadcast system information related to the access stratum and transport of the non-access stratum (NAS) messages, paging, establishment and release of the RRC connection, security key management, handover, UE measurements related to inter-system (inter-RAT) mobility, QoS, etc..

Interfacing layers to the EUTRAN protocol stack:

  • NAS:[9] Protocol between the UE and the MME on the network side (outside of EUTRAN). Between others performs authentication of the UE, security control and generates part of the paging messages.
  • IP

Physical layer (L1) design

E-UTRA uses orthogonal frequency-division multiplexing (OFDM), multiple-input multiple-output (MIMO) antenna technology depending on the terminal category and can use as well beamforming for the downlink to support more users, higher data rates and lower processing power required on each handset.[10]

In the uplink LTE uses both OFDMA and a precoded version of OFDM called Single-Carrier Frequency-Division Multiple Access (SC-FDMA) depending on the channel. This is to compensate for a drawback with normal OFDM, which has a very high peak-to-average power ratio (PAPR). High PAPR requires more expensive and inefficient power amplifiers with high requirements on linearity, which increases the cost of the terminal and drains the battery faster. For the uplink, in release 8 and 9 multi user MIMO / Spatial division multiple access (SDMA) is supported; release 10 introduces also SU-MIMO.

In both OFDM and SC-FDMA transmission modes a cyclic prefix is appended to the transmitted symbols. Two different lengths of the cyclic prefix are available to support different channel spreads due to the cell size and propagation environment. These are a normal cyclic prefix of 4.7 µs, and an extended cyclic prefix of 16.6µs.

 
LTE Resource Block in time and frequency domains: 12 subcarriers, 0.5 ms timeslot (normal cyclic prefix).

LTE supports both Frequency-division duplex (FDD) and Time-division duplex (TDD) modes. While FDD makes use of paired spectra for UL and DL transmission separated by a duplex frequency gap, TDD splits one frequency carrier into alternating time periods for transmission from the base station to the terminal and viceversa. Both modes have their own frame structure within LTE and these are aligned with each other meaning that similar hardware can be used in the base stations and terminals to allow for economy of scale. The TDD mode in LTE is aligned with TD-SCDMA as well allowing for coexistence. These days, a single chipset can support both TDD-LTE and FDD-LTE operating modes.

The LTE transmission is structured in the time domain in radio frames. Each of these radio frames is 10 ms long and consists of 10 sub frames of 1 ms each. For non-MBMS subframes, the OFDMA sub-carrier spacing in the frequency domain is 15 kHz. Twelve of these sub-carriers together allocated during a 0.5 ms timeslot are called a resource block.[11] A LTE terminal can be allocated, in the downlink or uplink, a minimum of 2 resources blocks during 1 subframe (1 ms).[12]

All L1 transport data is encoded using turbo coding and a contention-free quadratic permutation polynomial (QPP) turbo code internal interleaver.[13] L1 HARQ with 8 (FDD) or up to 15 (TDD) processes is used for the downlink and up to 8 processes for the UL

EUTRAN physical channels and signals

In the downlink there are several physical channels:[14]

  • The Physical Downlink Control Channel (PDCCH) carries between others the downlink allocation information, uplink allocation grants for the terminal.
  • The Physical Control Format Indicator Channel (PCFICH) used to signal the length of the PDCCH.
  • The Physical Hybrid ARQ Indicator Channel (PHICH) used to carry the acknowledges from the uplink transmissions.
  • The Physical Downlink Shared Channel (PDSCH) is used for L1 transport data transmission. Supported modulation formats on the PDSCH are QPSK, 16QAM and 64QAM.
  • The Physical Multicast Channel (PMCH) is used for broadcast transmission using a Single Frequency Network
  • The Physical Broadcast Channel (PBCH) is used to broadcast the basic system information within the cell

And the following signals:

  • The synchronization signals (PSS and SSS) are meant for the UE to discover the LTE cell and do the initial synchronization.
  • The reference signals (cell specific, MBSFN, and UE specific) are used by the UE to estimate the DL channel.
  • Positioning reference signals (PRS), added in release 9, meant to be used by the UE for OTDOA positioning (a type of multilateration)

In the uplink there are three physical channels:

  • Physical Random Access Channel (PRACH) is used for initial access and when the UE losses its uplink synchronization,[15]
  • Physical Uplink Shared Channel (PUSCH) carries the L1 UL transport data together with control information. Supported modulation formats on the PUSCH are QPSK, 16QAM and depending on the user equipment category 64QAM. PUSCH is the only channel, which because of its greater BW, uses SC-FDMA
  • Physical Uplink Control Channel (PUCCH) carries control information. Note that the Uplink control information consists only on DL acknowledges as well as CQI related reports as all the UL coding and allocation parameters are known by the network side and signaled to the UE in the PDCCH.

And the following signals:

  • Reference signals (RS) used by the enodeB to estimate the uplink channel to decode the terminal uplink transmission.
  • Sounding reference signals (SRS) used by the enodeB to estimate the uplink channel conditions for each user to decide the best uplink scheduling.

User Equipment (UE) categories

3GPP Release 8 defines five LTE user equipment categories depending on maximum peak data rate and MIMO capabilities support. With 3GPP Release 10, which is referred to as LTE Advanced, three new categories have been introduced, and two more with 3GPP Release 11.[2]

3GPP release User equipment category Maximum L1 datarate downlink Maximum number of DL MIMO layers Maximum L1 datarate uplink
Release 8 Category 1 10.3 Mbit/s 1 5.2 Mbit/s
Release 8 Category 2 51.0 Mbit/s 2 25.5 Mbit/s
Release 8 Category 3 102.0 Mbit/s 2 51.0 Mbit/s
Release 8 Category 4 150.8 Mbit/s 2 51.0 Mbit/s
Release 8 Category 5 299.6 Mbit/s 4 75.4 Mbit/s
Release 10 Category 6 301.5 Mbit/s 2 or 4 51.0 Mbit/s
Release 10 Category 7 301.5 Mbit/s 2 or 4 102.0 Mbit/s
Release 10 Category 8 2,998.6 Mbit/s 8 1,497.8 Mbit/s
Release 11 Category 9 452.2 Mbit/s 2 or 4 51.0 Mbit/s
Release 11 Category 10 452.2 Mbit/s 2 or 4 102.0 Mbit/s

Note: Maximum datarates shown are for 20 MHz of channel bandwidth. Maximum datarates will be lower if less bandwidth is utilized.

Note: These are L1 transport data rates not including the different protocol layers overhead. Depending on cell BW, cell load, network configuration, the performance of the UE used, propagation conditions, etc. practical data rates will vary.

Note: The 3.0 Gbit/s / 1.5 Gbit/s data rate specified as Category 8 is near the peak aggregate data rate for a base station sector. A more realistic maximum data rate for a single user is 1.2 Gbit/s (downlink) and 600 Mbit/s (uplink).[16] Nokia Siemens Networks has demonstrated downlink speeds of 1.4 Gbit/s using 100 MHz of aggregated spectrum.[17]

EUTRAN releases

As the rest of the 3GPP standard parts E-UTRA is structured in releases.

  • Release 8, frozen in 2008, specified the first LTE standard
  • Release 9, frozen in 2009, included some additions to the physical layer like dual layer (MIMO) beam-forming transmission or positioning support
  • Release 10, frozen in 2011, introduces to the standard several LTE Advanced features like carrier aggregation, uplink SU-MIMO or relays, aiming to a considerable L1 peak data rate increase.

All LTE releases have been designed so far keeping backward compatibility in mind. That is, a release 8 compliant terminal will work in a release 10 network, while release 10 terminals would be able to use its extra functionality.

Frequency bands and channel bandwidths

From Tables 5.5-1 "E-UTRA Operating Bands" and 5.6.1-1 "E-UTRA Channel Bandwidth" of 3GPP TS 36.101,[18][19] the following table lists the specified frequency bands of LTE and the channel bandwidths each listed band supports:

E-UTRA
operating
band
Uplink (UL)
BS receive
UE transmit (MHz)
Downlink (DL)
BS transmit
UE receive (MHz)
Duplex
mode
Channel
bandwidths
(MHz)
Common name Frequency
band
(MHz)
Duplex spacing (MHz)
Vorlage:Sort Vorlage:Sort – 1980 Vorlage:Sort – 2170 FDD 5, 10, 15, 20 IMT Vorlage:Sort 190
Vorlage:Sort Vorlage:Sort – 1910 Vorlage:Sort – 1990 FDD 1.4, 3, 5, 10, 15, 20 PCS Vorlage:Sort 80
Vorlage:Sort Vorlage:Sort – 1785 Vorlage:Sort – 1880 FDD 1.4, 3, 5, 10, 15, 20 DCS Vorlage:Sort 95
Vorlage:Sort Vorlage:Sort – 1755 Vorlage:Sort – 2155 FDD 1.4, 3, 5, 10, 15, 20 AWS (AWS-1) Vorlage:Sort 400
Vorlage:Sort Vorlage:Sort – 849 Vorlage:Sort – 894 FDD 1.4, 3, 5, 10 CLR Vorlage:Sort 45
Vorlage:Sort Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Sort Vorlage:Fontcolor
Vorlage:Sort Vorlage:Sort – 2570 Vorlage:Sort – 2690 FDD 5, 10, 15, 20 IMT-E Vorlage:Sort 120
Vorlage:Sort Vorlage:Sort – 915 Vorlage:Sort – 960 FDD 1.4, 3, 5, 10 E-GSM Vorlage:Sort 45
Vorlage:Sort Vorlage:Sort – 1784.9 Vorlage:Sort – 1879.9 FDD 5, 10, 15, 20 UMTS 1700 / Japan DCS
(subset of band 3)
Vorlage:Sort 95
Vorlage:Sort Vorlage:Sort – 1770 Vorlage:Sort – 2170 FDD 5, 10, 15, 20 Extended AWS
(superset of band 4)
Vorlage:Sort 400
Vorlage:Sort Vorlage:Sort – 1447.9 Vorlage:Sort – 1495.9 FDD 5, 10 Lower PDC Vorlage:Sort 48
Vorlage:Sort Vorlage:Sort – 716 Vorlage:Sort – 746 FDD 1.4, 3, 5, 10 Lower SMH blocks A/B/C Vorlage:Sort 30
Vorlage:Sort Vorlage:Sort – 787 Vorlage:Sort – 756 FDD 5, 10 Upper SMH block C Vorlage:Sort −31
Vorlage:Sort Vorlage:Sort – 798 Vorlage:Sort – 768 FDD 5, 10 Upper SMH block D Vorlage:Sort −30
Vorlage:Sort Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor
Vorlage:Sort Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor
Vorlage:Sort Vorlage:Sort – 716 Vorlage:Sort – 746 FDD 5, 10 Lower SMH blocks B/C
(subset of band 12)
Vorlage:Sort 30
Vorlage:Sort Vorlage:Sort – 830 Vorlage:Sort – 875 FDD 5, 10, 15 Japan lower 800 Vorlage:Sort 45
Vorlage:Sort Vorlage:Sort – 845 Vorlage:Sort – 890 FDD 5, 10, 15 Japan upper 800
(superset of band 6)
Vorlage:Sort 45
Vorlage:Sort Vorlage:Sort – 862 Vorlage:Sort – 821 FDD 5, 10, 15, 20 EU Digital Dividend Vorlage:Sort −41
Vorlage:Sort Vorlage:Sort – 1462.9 Vorlage:Sort – 1510.9 FDD 5, 10, 15 Upper PDC Vorlage:Sort 48
Vorlage:Sort Vorlage:Sort – 3490 Vorlage:Sort – 3590 FDD 5, 10, 15, 20 Vorlage:Sort 100
Vorlage:Sort Vorlage:Sort – 2020 Vorlage:Sort – 2200 FDD 1.4, 3, 5, 10, 15, 20 S-Band (AWS-4) Vorlage:Sort 180
Vorlage:Sort Vorlage:Sort – 1660.5 Vorlage:Sort – 1559 FDD 5, 10 L-Band Vorlage:Sort −101.5
Vorlage:Sort Vorlage:Sort – 1915 Vorlage:Sort – 1995 FDD 1.4, 3, 5, 10, 15, 20 Extended PCS
(superset of band 2)
Vorlage:Sort 80
Vorlage:Sort Vorlage:Sort – 849 Vorlage:Sort – 894 FDD 1.4, 3, 5, 10, 15 Extended CLR
(superset of bands 5, 6, 18 and 19)
Vorlage:Sort 45
Vorlage:Sort Vorlage:Sort – 824 Vorlage:Sort – 869 FDD 1.4, 3, 5, 10 SMR
(adjacent to band 5)
Vorlage:Sort 45
Vorlage:Sort Vorlage:Sort – 748 Vorlage:Sort – 803 FDD 3, 5, 10, 15, 20 APAC Vorlage:Sort 55
Vorlage:Sort n/a Vorlage:Sort – 728 FDD Lower SMH blocks D/E
(Carrier Aggregation with band 2, 4, or 23 only)
Vorlage:Sort n/a
Vorlage:Sort Vorlage:Sort – 2315 Vorlage:Sort – 2360 FDD 5, 10 WCS blocks A/B Vorlage:Sort 45
Vorlage:Sort Vorlage:Sort – 457.5 Vorlage:Sort – 467.5 FDD 1.4, 3, 5 Vorlage:Sort 10
Vorlage:Sort Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor
Vorlage:Sort Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Sort Vorlage:Fontcolor
Vorlage:Sort Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Sort Vorlage:Fontcolor
Vorlage:Sort Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Sort Vorlage:Fontcolor
Vorlage:Sort Vorlage:Sort – 1920 TDD 5, 10, 15, 20 Pre-IMT
(subset of band 39)
Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 2025 TDD 5, 10, 15 IMT Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 1910 TDD 1.4, 3, 5, 10, 15, 20 PCS (Uplink) Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 1990 TDD 1.4, 3, 5, 10, 15, 20 PCS (Downlink) Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 1930 TDD 5, 10, 15, 20 PCS (Duplex spacing) Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 2620 TDD 5, 10, 15, 20 IMT-E (Duplex Spacing)
(subset of band 41)
Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 1920 TDD 5, 10, 15, 20 DCS-IMT gap Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 2400 TDD 5, 10, 15, 20 Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 2690 TDD 5, 10, 15, 20 BRS / EBS Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 3600 TDD 5, 10, 15, 20 Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 3800 TDD 5, 10, 15, 20 Vorlage:Sort
Vorlage:Sort Vorlage:Sort – 803 TDD 3, 5, 10, 15, 20 APAC Vorlage:Sort

Deployments by region

Vorlage:Further

The following table shows the standardized LTE bands and their regional use. The main LTE bands are in bold print.

  • Networks on LTE-bands 1, 3, 7, 28 (FDD-LTE) or 38, 40 (TDD-LTE) are suitable for future global roaming in ITU Regions 1, 2 and 3.
  • Networks on LTE-band 8 (FDD-LTE) may allow global roaming in the future (ITU Regions 1, 2 and 3) (Long-term perspective).
  • Networks on LTE-band 20 (FDD-LTE) are suitable for roaming in ITU Region 1 (EMEA) only.
  • Networks on LTE-bands 2 and 4 (FDD-LTE) are suitable for roaming in ITU Region 2 (Americas) only.
Operating band Frequency band Common name North America Latin America Europe Asia Africa Oceania
01 2100 IMT Nein Nein Vorlage:Fontcolor Japan (au, NTT Docomo, SoftBank Mobile), Philippines (Smart), South Korea (LG U+), Tajikistan (Babilon Mobile), Thailand (DTAC, TrueMove-H) Angola (Unitel) Vorlage:Fontcolor
02 1900 PCS A-F USA (AT&T, C Spire, T-Mobile) Dominican Republic (Tricom), Guatemala (Movistar), Paraguay (Personal), Peru (Claro), Uruguay (Movistar) Nein Nein Nein Nein
03 1800 DCS Nein Aruba (SETAR), Brazil (Nextel), Cayman Islands (Digicel Cayman), Costa Rica (Claro, Movistar), Dominican Republic (Orange), Venezuela (Digitel GSM) Ja Ja Ja Ja
04 1700 AWS A-F Ja Ja Nein Nein Nein Nein
05 850 CLR USA (U.S. Cellular) Vorlage:Fontcolor Nein South Korea (LG U+, SK Telecom) Nein Australia (Vodafone)
Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown
07 2600 IMT-E Canada (Bell, Rogers) Ja Ja Ja Vorlage:Fontcolor Australia (Optus, Vorlage:Fontcolor), Vorlage:Fontcolor
08 900 E-GSM Nein Nein Czech Republic (Vodafone (temporary)[20][21]) South Korea (KT), Vorlage:Fontcolor Vorlage:Fontcolor Vorlage:Fontcolor
09 1700 Nein Nein Nein Japan (E MOBILE, NTT Docomo)
(compatible with band 3)
Nein Nein
10 1700 EAWS A-G Vorlage:Fontcolor Vorlage:Fontcolor Nein Nein Nein Nein
11 1500 LPDC Nein Nein Nein Japan (au) Nein Nein
12 700 LSMH A/B/C USA (Regional carriers, U.S. Cellular, T-Mobile) Nein Nein Nein Nein Kiribati (TSKL)
13 700 USMH C Vorlage:Fontcolor, USA (Verizon) Bolivia (Entel Bolivia) Nein Nein Nein Nein
14 700 USMH D Vorlage:Fontcolor Nein Nein Nein Nein Nein
15 Nein Nein Vorlage:Unknown Nein Nein Nein
16 Nein Nein Vorlage:Unknown Nein Nein Nein
17 700 LSMH B/C Canada (Rogers), USA (AT&T) Antigua & Barbuda (Digicel), Bahamas (BTC), Cayman Islands (C&W LIME) Nein Nein Nein Nein
18 800 Nein Nein Nein Japan (au)
(to be replaced by band 26)
Nein Nein
19 800 Nein Nein Nein Japan (NTT Docomo)
(to be replaced by band 26)
Nein Nein
20 800 EUDD Nein Nein Ja Qatar (Ooredoo, Vodafone) Nigeria (Smile), Tanzania (Smile), Uganda (Orange, Smile) Fiji (Digicel)
21 1500 UPDC Nein Nein Nein Japan (NTT Docomo) Nein Nein
22 3500 Nein Nein Vorlage:Fontcolor Nein Nein Nein
23 2000 S-Band Vorlage:Fontcolor Nein Nein Nein Nein Nein
24 1600 L-Band Vorlage:Fontcolor Nein Nein Nein Nein Nein
25 1900 EPCS A-G USA (Sprint) Vorlage:Fontcolor Nein Nein Nein Nein
26 850 ECLR USA (Sprint) Vorlage:Fontcolor Nein Vorlage:Fontcolor Nein Vorlage:Fontcolor
27 800 SMR Vorlage:Fontcolor Nein Nein Nein Nein Nein
28 700 APAC Nein Vorlage:Fontcolor Vorlage:Fontcolor Taiwan (FarEasTone, Taiwan Mobile, Vorlage:Fontcolor, Vorlage:Fontcolor), Vorlage:Fontcolor Vorlage:Fontcolor Australia (Optus, Telstra), New Zealand (Vodafone, Spark), Papua New Guinea (Digicel)
29 700 LSMH D/E Vorlage:Fontcolor Nein Nein Nein Nein Nein
Vorlage:Fontcolor Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown
Vorlage:Fontcolor Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown
Vorlage:Fontcolor Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown Vorlage:Unknown
33 TDD 2100 IMT Nein Nein Vorlage:Fontcolor Vorlage:Fontcolor Nein Vorlage:Fontcolor
34 TDD 2100 IMT Nein Nein Vorlage:Fontcolor Vorlage:Fontcolor Nein Nein
35 TDD 1900 PCS Vorlage:Fontcolor Vorlage:Fontcolor Nein Nein Nein Nein
36 TDD 1900 PCS Vorlage:Fontcolor Vorlage:Fontcolor Nein Nein Nein Nein
37 TDD 1900 PCS Vorlage:Fontcolor Vorlage:Fontcolor Nein Nein Nein Nein
38 TDD 2600 IMT-E Nein Brazil (On Telecom, SKY Brasil) Poland (Aero2), Russia (MegaFon, MTS), Spain (COTA), Sweden (3) Saudi Arabia (Mobily, Zain) Uganda (MTN) Nein
39 TDD 1900 Nein Nein Nein Vorlage:Fontcolor Nein Nein
40 TDD 2300 Nein Vorlage:Fontcolor Russia (Vainah Telecom) Ja Nigeria (Spectranet), South Africa (Telkom) Australia (NBN Co, Optus), Vanuatu (WanTok)
41 TDD 2500 BRS/EBS USA (Sprint, Vorlage:Fontcolor) Nein Nein China (China Mobile, China Telecom, China Unicom), Japan (SoftBank (WCP)) Nein Nein
42 TDD 3500 Canada (ABC Communications) Vorlage:Fontcolor Belgium (b-lite), United Kingdom (UK Broadband) Bahrain (Menatelecom) Nein Nein
43 TDD 3700 Nein Nein United Kingdom (UK Broadband) Nein Nein Nein
44 TDD 700 APAC Nein Nein Nein Vorlage:Fontcolor Nein Nein

Technology demos

  • In September 2007, NTT Docomo demonstrated e-UTRA data rates of 200 Mbit/s with power consumption below 100 mW during the test.[22]
  • In April 2008, LG and Nortel demonstrated e-UTRA data rates of 50 Mbit/s while travelling at 110 km/h.[23]
  • February 15, 2008 - Skyworks Solutions has released a front-end module for e-UTRAN.[24][25][26]

See also

References

Vorlage:Reflist

Vorlage:Mobile telecommunications standards Vorlage:Internet Access

  1. a b 3GPP UMTS Long Term Evolution page
  2. a b c 3GPP TS 36.306 E-UTRA User Equipment radio access capabilities
  3. a b 3GPP TS 36.300 E-UTRA Overall description
  4. 3GPP TS 36.201 E-UTRA: LTE physical layer; General description
  5. 3GPP TS 36.321 E-UTRA: Access Control (MAC) protocol specification
  6. 3GPP TS 36.322 E-UTRA: Radio Link Control (RLC) protocol specification
  7. 3GPP TS 36.323 E-UTRA: Packet Data Convergence Protocol (PDCP) specification
  8. 3GPP TS 36.331 E-UTRA: Radio Resource Control (RRC) protocol specification
  9. 3GPP TS 24.301 Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3
  10. http://cp.literature.agilent.com/litweb/pdf/5989-7898EN.pdf
  11. TS 36.211 rel.11, LTE, Evolved Universal Terrestrial Radio Access, Physical channels and modulation - chapters 5.2.3 and 6.2.3: Resource blocks etsi.org, january 2014
  12. LTE Frame Structure and Resource Block Architecture Teletopix.org, retrieved in august 2014.
  13. 3GPP TS 36.212 E-UTRA Multiplexing and channel coding
  14. 3GPP TS 36.211 E-UTRA Physical channels and modulation
  15. Nomor Research Newsletter: LTE Random Access Channel
  16. 3GPP LTE / LTE-A Standardization: Status and Overview of Technologie, slide 16
  17. 4G speed record smashed with 1.4 Gigabits-per-second mobile call #MWC12
  18. 3GPP TS 36.101 E-UTRA: User Equipment (UE) radio transmission and reception
  19. 3GPP LTE Standards Update
  20. Vodafone CR sets out stall to blanket over 50% of country with 3G/LTE by 1Q14. TeleGeography, 6. November 2013, abgerufen am 12. Dezember 2013.
  21. Vodafone’s Czech unit extends LTE-900 coverage. TeleGeography, 12. Dezember 2013, abgerufen am 12. Dezember 2013.
  22. NTT DoCoMo develops low power chip for 3G LTE handsets
  23. Vorlage:Wayback
  24. Skyworks Rolls Out Front-End Module for 3.9G Wireless Applications. (Skyworks Solutions Inc.) (free registration required) In: Wireless News, February 14, 2008. Abgerufen am 14. September 2008 
  25. Wireless News Briefs - February 15, 2008 In: WirelessWeek, February 15, 2008. Abgerufen am 14. September 2008 
  26. Skyworks Introduces Industry's First Front-End Module for 3.9G Wireless Applications. In: Skyworks press release, Free with registration, 11 Feb 2008. Abgerufen am 14. September 2008