Bilinearform

lineare Abbildung in zwei Variablen in den Körper des zugehörigen Vektorraums
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 11. Mai 2014 um 15:36 Uhr durch Quartl (Diskussion | Beiträge) (Beispiele/Eigenschaften: link). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Als Bilinearform bezeichnet man in der linearen Algebra eine Funktion, welche zwei Vektoren einen Skalarwert zuordnet und die linear in ihren beiden Argumenten ist.

Die beiden Argumente können verschiedenen Vektorräumen entstammen, denen jedoch ein gemeinsamer Skalarkörper zugrunde liegen muss; eine Bilinearform ist eine Abbildung . Eine Bilinearform ist eine Linearform bezüglich sowohl ihres ersten als auch ihres zweiten Arguments, und somit insbesondere eine Multilinearform mit zwei Argumenten.

Der Wert einer mindestens positiv definiten Bilinearform auf zwei Vektoren wird meist als geschrieben.

Definition

Es seien   Vektorräume über einem Körper   (oder allgemeiner ein Linksmodul   und ein Rechtsmodul   über einem nicht notwendigerweise kommutativen Ring).

Eine Abbildung

 

heißt Bilinearform, wenn gilt:

  •  
  •  
  •  
  •  

dabei sind  ,   und  .

Symmetrieeigenschaften im Fall V = W

Wenn beide Argumente der Bilinearform aus dem gleichen Vektorraum   stammen, bezeichnet man   als den Formwert des Vektors x (bezüglich B). Die Bilinearform   kann zusätzliche Symmetrieeigenschaften haben:

  • Eine Bilinearform   heißt symmetrisch, wenn
 
für alle   gilt.
Für eine symmetrische Bilinearform ist stets   (Polarisationsformel). Daraus folgt, dass die Bilinearform durch die Gesamtheit der Formwerte vollständig bestimmt ist, falls der zugrundeliegende Körper   eine Charakteristik ungleich   hat  .
  • Eine Bilinearform   heißt alternierend, wenn alle Formwerte in Bezug auf   verschwinden, wenn also
 
für alle   gilt.
  • Eine Bilinearform   heißt antisymmetrisch oder schiefsymmetrisch, wenn
 
für alle   gilt.

Jede alternierende Bilinearform ist auch antisymmetrisch. Ist  , was zum Beispiel für   und   erfüllt ist, gilt auch die Umkehrung: Jede antisymmetrische Bilinearform ist alternierend. Betrachtet man allgemeiner Moduln über einem beliebigen kommutativen Ring, sind diese beiden Begriffe äquivalent, wenn der Zielmodul keine 2-Torsion besitzt.

Beispiele

  • Ein Skalarprodukt auf einem reellen Vektorraum ist eine nicht ausgeartete, symmetrische, positiv definite Bilinearform.
  • Ein Skalarprodukt   auf einem komplexen Vektorraum   ist keine Bilinearform, sondern eine Sesquilinearform. Fasst man jedoch   als reellen Vektorraum auf, so ist
 
eine symmetrische Bilinearform und
 
eine alternierende Bilinearform.
  • Es gibt eine kanonische nicht ausgeartete Bilinearform
 

Ausartungsraum

Definition des Ausartungsraums

Sei   eine Bilinearform. Die Menge

 

ist ein Untervektorraum von   und heißt Rechtskern oder Rechtsradikal der Bilinearform. Entsprechend heißt

 

Linkskern oder Linksradikal. Ist eine Bilinearform   symmetrisch, so stimmen Rechtskern und Linkskern überein und man nennt diesen Raum den Ausartungsraum von  .

Die Schreibweisen   und   werden mit analoger Definition auch für Teilmengen   beziehungsweise   benutzt.

Nicht-ausgeartete Bilinearform

Jede Bilinearform   definiert zwei lineare Abbildungen

 

und

 

Rechts- und Linkskern sind die Kerne dieser Abbildungen:

 
 

Sind beide Kerne trivial (die beiden Abbildungen   und   also injektiv), so heißt die Bilinearform nicht-ausgeartet, nicht-entartet oder perfekte Paarung. Andernfalls heißt die Bilinearform ausgeartet oder entartet.

Die Bilinearform ist somit genau dann nicht-ausgeartet, wenn Folgendes gilt:

  • Zu jedem Vektor   existiert ein Vektor   mit   und
  • zu jedem Vektor   existiert ein Vektor   mit  

Sind   und   endlichdimensional, so sind die Abbildungen   und   für eine nicht-ausgeartete Paarung Isomorphismen.

Ist die Bilinearform symmetrisch, so ist sie genau dann nicht-ausgeartet, wenn ihr Ausartungsraum der Nullvektorraum ist.

Koordinatendarstellung

Für endlichdimensionale   und   kann man Basen   und   wählen.

Die darstellende Matrix einer Bilinearform   ist nun

 
 

Sind   und   die Koordinatenvektoren von   und  , so gilt

 

wobei das Matrixprodukt eine  -Matrix liefert, also ein Körperelement.

Ist umgekehrt   eine beliebige  -Matrix, so definiert

 

eine Bilinearform  .

Basiswechsel

Sind   und   weitere Basen von   und  , weiterhin   die Basiswechselmatrix von   nach  . Dann ergibt sich die Matrix von   in der neuen Basis als

 

Die Matrizen   und   heißen dann kongruent.

Beispiele/Eigenschaften

  • Das Standardskalarprodukt in   hat bezüglich der Standardbasis als Matrix die Einheitsmatrix.
  • Wenn V=W und dieselbe Basis für V und W verwendet wird, so gilt: Die Bilinearform ist (anti)symmetrisch genau dann, wenn die Matrix (anti)symmetrisch ist. Sie ist alternierend genau dann, wenn die Matrix antisymmetrisch ist und alle Elemente auf ihrer Hauptdiagonale gleich null sind
  • Die Abbildung   ist eine Bijektion des Raumes der Bilinearformen   auf die  - -Matrizen. Definiert man die Summe und Skalarmultiplikation von Bilinearformen auf kanonische Weise ( ), so ist diese Bijektion auch ein Vektorraumisomorphismus.
  • Für symmetrische Bilinearformen über Vektorräumen endlicher Dimension existiert eine Basis, in der die darstellende Matrix Diagonalgestalt hat (falls  ). (siehe Gram-Schmidtsches Orthogonalisierungsverfahren für den Spezialfall positiv definiter Bilinearformen)
  • Falls weiterhin  , kann man eine Basis finden, in der zusätzlich auf der Diagonalen nur die Einträge 1, -1 und 0 vorkommen (Trägheitssatz von Sylvester)

Weiterführende Bemerkungen

  • Bilinearformen   entsprechen linearen Abbildungen  ; siehe Tensorprodukt.
  • Wenn die Abbildung nicht notwendig in den Skalarkörper K, sondern in einen beliebigen Vektorraum erfolgt, spricht man von einer bilinearen Abbildung.
  • Die Verallgemeinerung des Begriffes der Bilinearform auf mehr als zwei Argumente heißt Multilinearform.
  • Über dem Körper der komplexen Zahlen fordert man oft Linearität im einen und Semilinearität im anderen Argument; statt einer Bilinearform erhält man dann eine Sesquilinearform. Insbesondere ist ein inneres Produkt über einem reellen Vektorraum eine Bilinearform, über einem komplexen Vektorraum aber nur eine Sesquilinearform.

Literatur