Die Untereinheit Hämoglobin epsilon ist ein Protein, für welches das beim Menschen vorhandene HBE1-Gen codiert.[1]
Ε-Globin | ||
---|---|---|
![]() | ||
Struktur des HBE1-Proteins | ||
Bezeichner | ||
Gen-Name(n) | HBE1; HBE | |
Externe IDs |
Funktion
Das epsilonglobin-Gen (HBE) äußert sich normalerweise im embryonalen Dottersack: Zwei epsilon-Ketten bilden zusammen mit zwei zeta-Ketten (dem alpha-Globin ähnlich) das embryonale Hämoglobin „Hb Gower I“; zwei epsilon-Ketten bilden zusammen mit zwei alpha-Ketten das embryonale „Hb Gower II“. Beide dieser embryonalen Hämoglobine werden normalerweise durch fötale Hämoglobine und später durch das Hämoglobin Erwachsener verdrängt. Fünf dem beta-Globin ähnliche Gene wurden auf Chromosom 11 in einem Cluster von 45 kb in der folgenden Reihenfolge gefunden: 5' - epsilon – gamma-G – gamma-A – delta – beta - 3'.[2]
Siehe auch
Einzelnachweise
- ↑ Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ: A review of the molecular genetics of the human alpha-globin gene cluster. In: Blood. 73. Jahrgang, Nr. 5, Mai 1989, S. 1081–104, PMID 2649166.
- ↑ Entrez Gene: HBE1 hemoglobin, epsilon 1. Abgerufen am 19. Mai 2012.
Literatur
- Clegg JB: Embryonic hemoglobin: sequence of the epsilon and zeta chains. In: Tex. Rep. Biol. Med. 40. Jahrgang, 1982, S. 23–8, PMID 6172865.
- Giardina B, Messana I, Scatena R, Castagnola M: The multiple functions of hemoglobin. In: Crit. Rev. Biochem. Mol. Biol. 30. Jahrgang, Nr. 3, 1995, S. 165–96, doi:10.3109/10409239509085142, PMID 7555018.
- Chang JC, Kan YW: beta 0 thalassemia, a nonsense mutation in man. In: Proc. Natl. Acad. Sci. USA. 76. Jahrgang, Nr. 6, 1979, S. 2886–9, doi:10.1073/pnas.76.6.2886, PMID 88735, PMC 383714 (freier Volltext).
- Proudfoot NJ, Baralle FE: Molecular cloning of human epsilon-globin gene. In: Proc. Natl. Acad. Sci. U.S.A. 76. Jahrgang, Nr. 11, 1980, S. 5435–9, doi:10.1073/pnas.76.11.5435, PMID 160554, PMC 411663 (freier Volltext).
- Proudfoot NJ, Brownlee GG: 3' non-coding region sequences in eukaryotic messenger RNA. In: Nature. 263. Jahrgang, Nr. 5574, 1976, S. 211–4, doi:10.1038/263211a0, PMID 822353.
- Marotta CA, Forget BG, Cohne-Solal M, et al.: Human beta-globin messenger RNA. I. Nucleotide sequences derived from complementary RNA. In: J. Biol. Chem. 252. Jahrgang, Nr. 14, 1977, S. 5019–31, PMID 873928.
- Gelinas R, Endlich B, Pfeiffer C, et al.: G to A substitution in the distal CCAAT box of the A gamma-globin gene in Greek hereditary persistence of fetal haemoglobin. In: Nature. 313. Jahrgang, Nr. 6000, 1985, S. 323–5, doi:10.1038/313323a0, PMID 2578619.
- Collins FS, Metherall JE, Yamakawa M, et al.: A point mutation in the A gamma-globin gene promoter in Greek hereditary persistence of fetal haemoglobin. In: Nature. 313. Jahrgang, Nr. 6000, 1985, S. 325–6, doi:10.1038/313325a0, PMID 2578620.
- Lang KM, Spritz RA: Cloning specific complete polyadenylylated 3'-terminal cDNA segments. In: Gene. 33. Jahrgang, Nr. 2, 1985, S. 191–6, doi:10.1016/0378-1119(85)90093-9, PMID 2581851.
- Ley TJ, Maloney KA, Gordon JI, Schwartz AL: Globin gene expression in erythroid human fetal liver cells. In: J. Clin. Invest. 83. Jahrgang, Nr. 3, 1989, S. 1032–8, doi:10.1172/JCI113944, PMID 2921315, PMC 303780 (freier Volltext).
- Chabot B, Black DL, LeMaster DM, Steitz JA: The 3' splice site of pre-messenger RNA is recognized by a small nuclear ribonucleoprotein. In: Science. 230. Jahrgang, Nr. 4732, 1986, S. 1344–9, doi:10.1126/science.2933810, PMID 2933810.
- Engelke DR, Hoener PA, Collins FS: Direct sequencing of enzymatically amplified human genomic DNA. In: Proc. Natl. Acad. Sci. U.S.A. 85. Jahrgang, Nr. 2, 1988, S. 544–8, doi:10.1073/pnas.85.2.544, PMID 3267215, PMC 279587 (freier Volltext).
- Fei YJ, Stoming TA, Efremov GD, et al.: Beta-thalassemia due to a T----A mutation within the ATA box. In: Biochem. Biophys. Res. Commun. 153. Jahrgang, Nr. 2, 1988, S. 741–7, doi:10.1016/S0006-291X(88)81157-4, PMID 3382401.
- Prchal JT, Cashman DP, Kan YW: Hemoglobin Long Island is caused by a single mutation (adenine to cytosine) resulting in a failure to cleave amino-terminal methionine. In: Proc. Natl. Acad. Sci. U.S.A. 83. Jahrgang, Nr. 1, 1986, S. 24–7, doi:10.1073/pnas.83.1.24, PMID 3455755, PMC 322783 (freier Volltext).
- van Santen VL, Spritz RA: mRNA precursor splicing in vivo: sequence requirements determined by deletion analysis of an intervening sequence. In: Proc. Natl. Acad. Sci. U.S.A. 82. Jahrgang, Nr. 9, 1985, S. 2885–9, doi:10.1073/pnas.82.9.2885, PMID 3857622, PMC 397671 (freier Volltext).
- Ruskin B, Greene JM, Green MR: Cryptic branch point activation allows accurate in vitro splicing of human beta-globin intron mutants. In: Cell. 41. Jahrgang, Nr. 3, 1985, S. 833–44, doi:10.1016/S0092-8674(85)80064-7, PMID 3879973.
- Tuan D, Solomon W, Li Q, London IM: The „beta-like-globin“ gene domain in human erythroid cells. In: Proc. Natl. Acad. Sci. U.S.A. 82. Jahrgang, Nr. 19, 1985, S. 6384–8, doi:10.1073/pnas.82.19.6384, PMID 3879975, PMC 390720 (freier Volltext).
- Orkin SH, Antonarakis SE, Kazazian HH: Base substitution at position -88 in a beta-thalassemic globin gene. Further evidence for the role of distal promoter element ACACCC. In: J. Biol. Chem. 259. Jahrgang, Nr. 14, 1984, S. 8679–81, PMID 6086605.