Diskussion:Erdkrümmung

Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 21. Januar 2014 um 13:01 Uhr durch 2001:a60:236a:ac01:d180:6f2c:bec7:9ae3 (Diskussion) (Berechnungen für die Mont Blanc Sichtbarkeit korrigiert). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Letzter Kommentar: vor 14 Jahren von 77.119.168.38 in Abschnitt Sichtbarkeit der Erdkrümmung

Sichtbarkeit der Erdkrümmung

Was vielleicht noch fehlt: Ab welcher Höhe, klare Sich vorausgesetzt, ist die Erdkrümmung mit bloßem Auge erkennbar? Es gibt Berichte, wonach die Erdkrümmung so ab 20 oder 30 km Höhe direkt (d.h. als Krümmung oder sichtbare Absenkung des Horizonts) sichtbar sein soll; demgegenüber ist sie bei Linienflügen (9-12 km ü.NN, d.h. vielleicht 5-10 km über der Wolkendecke) kaum sichtbar (höchstens erahnbar).--SiriusB 11:30, 25. Dez 2005 (CET) sdfdsf

Stimmen denn die Formeln?

Die angegebenen Rechenbeispiele entsprechen nicht meinen Berechnungen und auch nicht den Erdkrümmungswerten, die im Bodensee Artikel angegeben sind. -- Schlegem 11:27, 27. Aug. 2010 (CEST)Beantworten

Die Rechnungen sind definitiv richtig, ich habe aber zweifel an der Näherungsformel. Wenn man von einem rechtwinkeligen Dreieck ausgeht, dann sollte es eigentlich L/2 anstatt von L sein. Im Endeffekt ist es ja einfach der Pythagoras mit dem man auf Basis von Radius und der halben Entfernung zwischen den beiden Punkten die dritte Seite dieses Dreiecks berechnet. Dann zieht man vom Radius die dritte Seite des Dreiecks ab. --77.119.168.38 18:34, 5. Dez. 2010 (CET)Beantworten

Praktisches Beispiel - Mont Blanc

Ich wage mal, die praktische Beispielsrechnung in Frage zu stellen. So wird hier erklärt, von einem 2000 m hohen Beobachtungspunkt erreiche der Mont Blanc den Horizont nur mit Hilfe der Refraktion, und auch dann nur knapp. Das halte ich für fragwürdig. Die Refraktion betrage witterungsabhängig zwischen 5 und 15 %. Im Beispiel ist bereits mit den maximalen 15 % gerechnet, mit dem Ergebnis, dass der Mont Blanc nur bei starker Refraktion, und auch dann noch nur 0,04 ° über den Horizont komme. Das wären, bei einer Distanz von 200 km 140 Meter. Nun sagt uns der Text nicht, über was der Mont Blanc dann noch gerade eben 140 m aufragt, also ob ein Tiefland dazwischen liegen soll oder andere Berge mit 1000, 2000 oder 3000 m Höhe. Vergleicht man damit nun meine häufigen Beobachtungen, wonach der Mont Blanc vom Belchen im Schwarzwald eigentlich immer zu sehen ist, wenn die Klarheit der Luft es zulässt, und zwar samt Nebengipfel "Dome du Gouter", der 500 m niedriger ist, dann stimmt hier irgendetwas nicht. Der Belchen ist nämlich deutlich weniger als 2000 m hoch (sondern 1414), und ca. 225 km vom Mont Blanc entfernt. Bei 225 km Entfernung bedeutet der Winkel von 0,04° eine Höhe von 164 m (über dem Horizont). In Wahrheit ragt er aber mehr als 500 m auf, und das noch über Bergen, die ihrerseits mindestens 2200 m hoch sind. Also entweder habe ich falsch gerechnet oder der Autor, oder die Refraktion ist immer deutlich größer als die angegebenen 15%. Matthias217.233.49.180 13:52, 20. Mai 2008 (CEST)Beantworten


-- Die Refraktion hat ungefähr einen Krümmungsradius, der dem achtfachen Erdradius entspricht (k=0.125). Um obige Frage zu beantworten genügt es, die Näherungsformel für die Erdkrümmung y=x*x/2/r zu verwenden. y=orthogonaler Abstand von der Tangente, x=Länge der Tangente, r=Erdradius (circa 6371 km). Auf die Refraktionseinflüsse umgerechnet, ergibt sich y=x*x/16*r. Bei einer Entfernung von 225 km ergibt das einen vertikalen Effekt von 225000*225000/16/6371000=496.6 m. Diesen Betrag addiert man zur Höhe des Mont Blanc und zieht die Höhe des Belchen ab, was eine Höhendifferenz von circa 3890 m ergibt, die man in die Formel für den Einfluss der Erdkrümmung einsetzt und damit eine theoretische Maximalsichtweite von 223 km erhält.

Allerdings sind 225 km Entfernung ein Größenordnung, wo genaue Angaben nicht mehr möglich sind. Die Sichtlinie vom Belchen zum Mont Blanc läuft sicher über andere Berge, die nahe an diese Linie kommen und als Störungen auf den Strahl einwirken. Der Refraktionbeiwert ist für eine Genauigkeit von +/- 10 cm z. B. nur für Kurzstrecken bis 10 km anwendbar und setzt eine ungestörte Schichtung der Luft voraus. Genau das ist über den Alpen nicht gegeben und führt dort zu überraschenden Lokaleffekten, die einem Vermesser bei der Arbeit große Probleme machen, wenn er auf trigonometrische Höhenmessung angewiesen ist. Schuld daran ist die ungleichmäßige Erwärmung der Luft durch bereichsweise Sonneneinstrahlung und Abschattung entlang der Sichtlinie. Idealwetter für trigonometrische Höhenmessungen ist voll bedeckter Himmel bei leichtem Wind und mäßigen Temperaturen. Dann hat man aber keine gute Fernsicht. Im Flachland sind die Verhältnisse bei weitem nicht so kritisch, dort kann man sich auf diesen Erfahrungswert einigermaßen verlassen. --Hubert_Badtke 19:53, 5. Jul. 2008 (CEST)Beantworten

Der Mont Blanc ist nach aktuellen Quellen aber 4810 Meter hoch. Ich verzichte darauf, mit diesem Wert nachzurechnen, was im Artikel steht. --Allesmüller 21:53, 14. Mär. 2010 (CET)Beantworten

Berechnungen für die Mont Blanc Sichtbarkeit korrigiert

Die Berechnung für den Sichtbarkeitswinkel des Mont Blanc von einem 2000m hohen Berg stimmten nicht. Darin ist nicht berücksichtigt, dass der begrenzende Faktor die theoretische Horizontlinie auf Meereshöhe ist. Man muss daher berechnen, wie weit die Horizontlinie vom 2000er-Berg entfernt ist. Die liegt mit der Näherungsformel von Hubert Badtke bei ca. 160km. Ab dieser Linie erst bewirkt die Kugelgestalt ein Verminderung der Sichtbarkeit des Mont Blanc. D.h. z.B. für eine Gesamtentfernung von 200km wirken nur die letzten 40km vermindernd, und das heißt ca. 125m. Somit müssten - wenn alle geometrischen Annahmen stimmen, die Atmosphäre nicht refraktiert und keinerlei Topographie dazwischen liegt - ca. 4685m oberhalb der theor. Meereshöhe zu sehen sein, und das heißt etwa 1,34°. Mit der Gauss-Refraktion müsste man theor. sogar noch 392m mehr sehen, d.h. 5077m bzw. 1,45°. Ohne Berge dazwischen würde man nach dieser Theorie vom Belchen den Mont Blanc also nur um die dazwischen liegenden Berge verdeckt sehen. Wissenschaftlich wäre es, denn Sichtwinkel des Mont Blanc vom Belchen zu messen und mit der Theorie zu vergleichen, z.B. in dem man den Winkel zwischen bekannten Bergen davor und dem Mont Blanc Gipfel vermisst.

Im Artikel habe ich die Berechnung entsprechend korrigiert und einen Hinweis auf den Umgang mit der Beobachterhöhe eingefügt.